Volume formulae for fibred cone-manifolds with spherical geometry

被引:0
|
作者
Kolpakov, A. A. [1 ]
机构
[1] Univ Toronto, Toronto, ON M5S 1A1, Canada
关键词
spherical geometry; cone-manifold; Seifert fibration; POLYGONS;
D O I
10.1070/SM8489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify cone-manifold structures on a three-dimensional sphere whose singular set consists of fibres of a Seifert fibration. We describe domains of existence of a spherical structure on these cone-manifolds in terms of cone angles, and obtain explicit analytic formulae for their volumes.
引用
收藏
页码:1693 / 1708
页数:16
相关论文
共 50 条
  • [41] ON THE CONE STRUCTURE AT INFINITY OF RICCI FLAT MANIFOLDS WITH EUCLIDEAN VOLUME GROWTH AND QUADRATIC CURVATURE DECAY
    CHEEGER, J
    TIAN, G
    INVENTIONES MATHEMATICAE, 1994, 118 (03) : 493 - 571
  • [42] Role of recording geometry in the performance of spectral diversity filters with spherical beam volume holograms
    Hsieh, C
    Momtahan, O
    Karbaschi, A
    Adibi, A
    Sullivan, ME
    Brady, DJ
    OPTICS LETTERS, 2005, 30 (02) : 186 - 188
  • [43] On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of Sp(n+1, 1)
    Shi, Yun
    Wang, Wei
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (03) : 271 - 307
  • [44] Wavefront conversion by 90-degree geometry volume holograms between plane and spherical waves
    Yan, Aimin
    Liu, Liren
    Liu, De'an
    Zhou, Yu
    Luan, Zhu
    PHOTOREFRACTIVE FIBER AND CRYSTAL DEVICES: MATERIALS, OPTICAL PROPERTIES, AND APPLICATIONS XII, 2006, 6314
  • [45] Laser cone beam computed tomography scanner geometry for large volume 3D dosimetry
    Jordan, K. J.
    Turnbull, D.
    Batista, J. J.
    7TH INTERNATIONAL CONFERENCE ON 3D RADIATION DOSIMETRY (IC3DDOSE), 2013, 444
  • [46] WEIGHTED BACKPROJECTION APPROACH TO CONE-BEAM 3D PROJECTION RECONSTRUCTION FOR TRUNCATED SPHERICAL DETECTION GEOMETRY
    CHO, ZH
    WU, EX
    HILAL, SK
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1994, 13 (01) : 110 - 122
  • [47] ON THE EFFECTIVE INTERACTION OF TEST MULTIPOLES IN POLAR FLUIDS .2. FINITE-VOLUME SPHERICAL GEOMETRY
    ARSENAULT, G
    MARCHILDON, L
    JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (01): : 394 - 400
  • [48] A mixed finite-element, finite-volume, semi-implicit discretisation for atmospheric dynamics: Spherical geometry
    Melvin, Thomas
    Shipway, Ben
    Wood, Nigel
    Benacchio, Tommaso
    Bendall, Thomas
    Boutle, Ian
    Brown, Alex
    Johnson, Christine
    Kent, James
    Pring, Stephen
    Smith, Chris
    Zerroukat, Mohamed
    Cotter, Colin
    Thuburn, John
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, 150 (764) : 4252 - 4269
  • [49] THE APPLICATION OF A NEW GEOMETRY CORRECTION FUNCTION FOR THE CALIBRATION OF NEUTRON SPHERICAL MEASURING DEVICES USING LARGE VOLUME NEUTRON SOURCES
    KHOSHNOODI, M
    SOHRABI, M
    RADIATION PROTECTION DOSIMETRY, 1992, 44 (1-4) : 121 - 124
  • [50] Parametric Study of Minimum Critical Volume for High-Assay Low-Enriched Uranium (20%) in Spherical Geometry Against Particle Size
    Christensen, Joseph A.
    Borrelli, R. A.
    NUCLEAR SCIENCE AND ENGINEERING, 2022, 196 (01) : 98 - 108