Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?

被引:198
|
作者
Archer, AJ
Rauscher, M
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, ITAP, D-70569 Stuttgart, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0305-4470/37/40/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to clarify confusions in the literature as to whether or not dynamical density functional theories for the one-body density of a classical Brownian fluid should contain a stochastic noise term. We point out that a stochastic as well as a deterministic equation of motion for the density distribution can be justified, depending on how the fluid one-body density is defined-i.e. whether it is an ensemble averaged density distribution or a spatially and/or temporally coarse grained density distribution.
引用
收藏
页码:9325 / 9333
页数:9
相关论文
共 50 条
  • [31] BREAKING A CHAIN OF INTERACTING BROWNIAN PARTICLES
    Aurzada, Frank
    Betz, Volker
    Lifshits, Mikhail
    [J]. ANNALS OF APPLIED PROBABILITY, 2021, 31 (06): : 2585 - 2611
  • [32] BROWNIAN DYNAMICS SIMULATION OF INTERACTING PARTICLES
    AKESSON, T
    JONSSON, B
    [J]. MOLECULAR PHYSICS, 1985, 54 (02) : 369 - 381
  • [34] Stochastic analysis based on deterministic Brownian motion
    Kamae, T
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2001, 125 (1) : 317 - 346
  • [35] Stochastic analysis based on deterministic Brownian motion
    Teturo Kamae
    [J]. Israel Journal of Mathematics, 2001, 125 : 317 - 346
  • [36] Dynamical density functional theory for glassy behaviour
    Fuchizaki, K
    Kawasaki, K
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (46) : 12203 - 12222
  • [37] Particle conservation in dynamical density functional theory
    de las Heras, Daniel
    Brader, Joseph M.
    Fortini, Andrea
    Schmidt, Matthias
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (24)
  • [38] Dynamical density functional theory for circle swimmers
    Hoell, Christian
    Loewen, Hartmut
    Menzel, Andreas M.
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [39] Non-Newtonian viscosity of interacting Brownian particles: comparison of theory and data
    Fuchs, M
    Cates, ME
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (01) : S401 - S406
  • [40] Dynamical origin of deterministic stochastic resonance
    Arai, K
    Yoshimura, K
    Mizutani, S
    [J]. PHYSICAL REVIEW E, 2002, 65 (01):