Stochastic analysis based on deterministic Brownian motion

被引:4
|
作者
Kamae, T [1 ]
机构
[1] Osaka City Univ, Dept Math, Osaka 5588585, Japan
关键词
BROWNIAN Motion; Sample Path; Stochastic Analysis; Deterministic Version; Countable Dense Subset;
D O I
10.1007/BF02773385
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A deterministic version of the Ito calculus is presented. We consider a model Y-t = H (N-t, t) with a deterministic Brownian N-t and an unknown function H. We predict Y-c from the observation {Y-t;t is an element of [a,b]}, where a < b < c. We prove that there exists an estimator Yt based on the observation such that E[((Y) over cap (t) - Y-c)(2)] = O((c - b)(2)) as c down arrow b.
引用
收藏
页码:317 / 346
页数:30
相关论文
共 50 条
  • [1] Stochastic analysis based on deterministic Brownian motion
    Teturo Kamae
    Israel Journal of Mathematics, 2001, 125 : 317 - 346
  • [2] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [3] Stochastic Analysis of the Fractional Brownian Motion
    L. Decreusefond
    A.S. üstünel
    Potential Analysis, 1999, 10 : 177 - 214
  • [4] DETERMINISTIC BROWNIAN-MOTION
    TREFAN, G
    GRIGOLINI, P
    WEST, BJ
    PHYSICAL REVIEW A, 1992, 45 (02): : 1249 - 1252
  • [5] DETERMINISTIC CHARACTERIZATION OF VIABILITY FOR STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Nie, Tianyang
    Rascanu, Aurel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) : 915 - 929
  • [6] An approach to generate deterministic Brownian motion
    Huerta-Cuellar, G.
    Jimenez-Lopez, E.
    Campos-Canton, E.
    Pisarchik, A. N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2740 - 2746
  • [7] Analysis of a stochastic SIR model with fractional Brownian motion
    Caraballo, Tomas
    Keraani, Sami
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (05) : 895 - 908
  • [8] Stochastic Numerical Analysis For Brownian Motion On SO(3)
    Piggott, Marc J.
    Solo, Victor
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3420 - 3425
  • [9] Stochastic calculus for Brownian motion on a Brownian fracture
    Khoshnevisan, D
    Lewis, TM
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (03): : 629 - 667
  • [10] Stochastic Thermodynamics of Brownian Motion
    Nicolis, Gregoire
    De Decker, Yannick
    ENTROPY, 2017, 19 (09):