Stochastic analysis based on deterministic Brownian motion

被引:4
|
作者
Kamae, T [1 ]
机构
[1] Osaka City Univ, Dept Math, Osaka 5588585, Japan
关键词
BROWNIAN Motion; Sample Path; Stochastic Analysis; Deterministic Version; Countable Dense Subset;
D O I
10.1007/BF02773385
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A deterministic version of the Ito calculus is presented. We consider a model Y-t = H (N-t, t) with a deterministic Brownian N-t and an unknown function H. We predict Y-c from the observation {Y-t;t is an element of [a,b]}, where a < b < c. We prove that there exists an estimator Yt based on the observation such that E[((Y) over cap (t) - Y-c)(2)] = O((c - b)(2)) as c down arrow b.
引用
收藏
页码:317 / 346
页数:30
相关论文
共 50 条
  • [41] Stochastic evolution equations with fractional Brownian motion
    Tindel, S
    Tudor, CA
    Viens, E
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) : 186 - 204
  • [42] Stochastic fluctuations and Brownian motion detection of gravitons
    Moffat, J. W.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [43] BROWNIAN MOTION OF HARMONIC OSCILLATOR WITH STOCHASTIC FREQUENCY
    BOURRET, RC
    FRISCH, U
    POUQUET, A
    PHYSICA, 1973, 65 (02): : 303 - 320
  • [44] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [45] Stochastic evolution equations with fractional Brownian motion
    S. Tindel
    C.A. Tudor
    F. Viens
    Probability Theory and Related Fields, 2003, 127 : 186 - 204
  • [46] Stochastic thermodynamics of Brownian motion in temperature gradient
    Ding, Mingnan
    Wu, Jun
    Xing, Xiangjun
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (03):
  • [47] Stochastic pure states for quantum Brownian motion
    Strunz, WT
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [48] From a stochastic to a microscopic approach to Brownian motion
    Bocquet, L
    ACTA PHYSICA POLONICA B, 1998, 29 (06): : 1551 - 1564
  • [49] REPRESENTATION OF FUNCTIONALS OF BROWNIAN MOTION BY STOCHASTIC INTEGRALS
    CLARK, JMC
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04): : 1282 - &
  • [50] STOCHASTIC BOUNDARY CROSSING PROBABILITIES FOR THE BROWNIAN MOTION
    Che, Xiaonan
    Dassios, Angelos
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (02) : 419 - 429