On convolutions of Siegel modular forms

被引:0
|
作者
Imamoglu, Ö
Martin, Y
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Siegel modular forms; Dirichlet series;
D O I
10.1002/mana.200310197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study a Rankin-Selberg convolution of n complex variables for pairs of degree n Siegel cusp forms. We establish its analytic continuation to C-n, determine its functional equations and find its singular curves. Also, we introduce and get similar results for a convolution of degree n Jacobi cusp forms. Furthermore, we show how the relation of a Siegel cusp form and its Fourier-Jacobi coefficients is reflected in a particular relation connecting the two convolutions studied in this paper. As a consequence, the Dirichlet series introduced by Kalinin [7] and Yamazaki [19] are obtained as particular cases. As another application we generalize to any degree the estimate on the size of Fourier coefficients given in [14].
引用
收藏
页码:75 / 95
页数:21
相关论文
共 50 条
  • [41] Hecke eigenvalues of Siegel modular forms (mod p) and of algebraic modular forms
    Ghitza, A
    JOURNAL OF NUMBER THEORY, 2004, 106 (02) : 345 - 384
  • [42] Siegel modular forms and black hole entropy
    Belin, Alexandre
    Castro, Alejandra
    Gomes, Joo
    Keller, Christoph A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [43] Congruences between Siegel modular forms II
    Ichikawa, Takashi
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1362 - 1371
  • [44] The joint weight enumerators and Siegel modular forms
    Choie, Y.
    Oura, M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (09) : 2711 - 2718
  • [45] ON SIEGEL MODULAR CUSP FORMS OF DEGREE TWO
    Kojima, Hisashi
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 34 (02) : 201 - 212
  • [46] Linear dependence among Siegel modular forms
    Poor, C
    Yuen, DS
    MATHEMATISCHE ANNALEN, 2000, 318 (02) : 205 - 234
  • [47] Siegel modular forms and finite symplectic groups
    Dalla Piazza, Francesco
    van Geemen, Bert
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (06) : 1771 - 1814
  • [48] Siegel modular forms and black hole entropy
    Alexandre Belin
    Alejandra Castro
    João Gomes
    Christoph A. Keller
    Journal of High Energy Physics, 2017
  • [49] ON SIEGEL MODULAR-FORMS .1.
    RUNGE, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 436 : 57 - 85
  • [50] ON THE HOLOMORPHIC DIFFERENTIAL FORMS OF THE SIEGEL MODULAR VARIETY
    MANNI, RS
    ARCHIV DER MATHEMATIK, 1989, 53 (04) : 363 - 372