Ripple Correlation Control Applied to Electric Vehicle Regenerative Braking

被引:2
|
作者
Choi, Sanghun [1 ]
Bazzi, Ali M. [1 ]
Krein, Philip T. [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Grainger Ctr Elect Machinery & Electromech, Urbana, IL 61801 USA
关键词
Ripple correlation control; regenerative braking system; induction generator optimization; energy savings in electric vehicles;
D O I
10.1109/PECI.2010.5437150
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper introduces output power maximization of a regenerative braking system using ripple correlation control (RCC). The proposed RCC application thus leads to a reduction in the size of the battery pack in an electric vehicle. Results show that the proposed optimization can increase regenerated power by up to 20% compared to conventional regenerative braking systems. Time and frequency domain simulations in MATLAB/Simulink verify the feasibility of such an application and show promising results in energy savings.
引用
收藏
页码:88 / 92
页数:5
相关论文
共 50 条
  • [1] Research on control for regenerative braking of electric vehicle
    Cao, BG
    Bai, ZF
    Zhang, W
    2005 IEEE International Conference on Vehicular Electronics and Safety Proceedings, 2005, : 92 - 97
  • [2] Regenerative braking control strategy for electric vehicle
    Li, Guo-Fei
    Lin, Yi
    He, Hong-Wen
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2009, 29 (06): : 520 - 524
  • [3] Correlation between Braking Strategy and Regenerative Braking Energy of Electric Vehicle
    You, Daoliang
    Luo, Xi
    Sun, Zhipeng
    Wu, Hao
    Wei, Guangjie
    Cheng, Yifan
    Gao, Bingzhao
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5463 - 5468
  • [4] Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle
    Yin, Guodong
    Jin, XianJian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [5] Research of Pneumatic Braking Force Control on Regenerative Braking Electric Vehicle
    Wang Jun
    GaoShuai
    Zhang XingShuo
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [6] Cooperative control of regenerative braking and friction braking for a hybrid electric vehicle
    Kumar, C. S. Nanda
    Subramanian, Shankar C.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2016, 230 (01) : 103 - 116
  • [7] Robust control for regenerative braking of battery electric vehicle
    Ye, M.
    Bai, Z.
    Cao, B.
    IET CONTROL THEORY AND APPLICATIONS, 2008, 2 (12): : 1105 - 1114
  • [8] Study of control strategy on regenerative braking for electric vehicle
    Ge, Hengyong
    Sun, Renyun
    Zhang, Xiaolong
    ADVANCES IN ENERGY SCIENCE AND EQUIPMENT ENGINEERING, 2015, : 2273 - 2276
  • [9] Study on Control Strategy for Regenerative Braking in a Pure Electric Vehicle
    Ma, Kun
    Chu, Liang
    Yao, Liang
    Wang, Yanbo
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC & MECHANICAL ENGINEERING AND INFORMATION TECHNOLOGY (EMEIT-2012), 2012, 23
  • [10] An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle
    彭栋
    殷承良
    张建武
    Journal of Shanghai Jiaotong University, 2005, (04) : 407 - 412