Object and Action Classification with Latent Variables

被引:3
|
作者
Bilen, Hakan [1 ]
Namboodiri, Vinay P. [1 ]
Van Gool, Luc J. [1 ]
机构
[1] Katholieke Univ Leuven, VISICS, IBBT, ESAT PSI, Leuven, Belgium
关键词
D O I
10.5244/C.25.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a generic framework to incorporate unobserved auxiliary information for classifying objects and actions. This framework allows us to explicitly account for localisation and alignment of representations for generic object and action classes as latent variables. We approach this problem in the discriminative setting as learning a max-margin classifier that infers the class label along with the latent variables. Through this paper we make the following contributions a) We provide a method for incorporating latent variables into object and action classification b) We specifically account for the presence of an explicit class related subregion which can include foreground and/or background. c) We explore a way to learn a better classifier by iterative expansion of the latent parameter space. We demonstrate the performance of our approach by rigorous experimental evaluation on a number of standard object and action recognition datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Object and Action Classification with Latent Window Parameters
    Bilen, Hakan
    Namboodiri, Vinay P.
    Van Gool, Luc J.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 106 (03) : 237 - 251
  • [2] Object and Action Classification with Latent Window Parameters
    Hakan Bilen
    Vinay P. Namboodiri
    Luc J. Van Gool
    International Journal of Computer Vision, 2014, 106 : 237 - 251
  • [3] Local Classification of Discrete Variables by Latent Class Models
    Buecker, Michael
    Szepannek, Gero
    Weihs, Claus
    CLASSIFICATION AS A TOOL FOR RESEARCH, 2010, : 127 - 135
  • [4] A “Weighted” Geochemical Variable Classification Method Based on Latent Variables
    Jiangtao Liu
    Qiuming Cheng
    Jian-Guo Wang
    Yusen Dong
    Natural Resources Research, 2022, 31 : 1925 - 1941
  • [5] Separating and reintegrating latent variables to improve classification of genomic data
    Payne, Nora Yujia
    Gagnon-Bartsch, Johann A.
    BIOSTATISTICS, 2022, 23 (04) : 1133 - 1149
  • [6] IMPROVING EMOTION CLASSIFICATION THROUGH VARIATIONAL INFERENCE OF LATENT VARIABLES
    Parthasarathy, Srinivas
    Rozgic, Viktor
    Sun, Ming
    Wang, Chao
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7410 - 7414
  • [7] A "Weighted" Geochemical Variable Classification Method Based on Latent Variables
    Liu, Jiangtao
    Cheng, Qiuming
    Wang, Jian-Guo
    Dong, Yusen
    NATURAL RESOURCES RESEARCH, 2022, 31 (04) : 1925 - 1941
  • [8] Direct and indirect effects of action on object classification
    Eun Young Yoon
    Glyn W. Humphreys
    Memory & Cognition, 2005, 33 : 1131 - 1146
  • [9] Direct and indirect effects of action on object classification
    Yoon, EY
    Humphreys, GW
    MEMORY & COGNITION, 2005, 33 (07) : 1131 - 1146
  • [10] Discriminative Latent Visual Space For Zero-Shot Object Classification
    Roy, Abhinaba
    Banerjee, Biplab
    Murino, Vittorio
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2552 - 2557