Lithium Molten Salt Battery at Near Room Temperature Using Low-Melting Alkali Metal Melts

被引:2
|
作者
Kubota, Keigo [1 ]
Matsumoto, Hajime [1 ]
机构
[1] Adv Ind Sci & Technol AIST, Res Inst Electrochem Energy, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
基金
日本科学技术振兴机构;
关键词
SECONDARY BATTERY; ELECTROLYTE;
D O I
10.1149/07301.0095ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Low-melting alkali metal salts containing the asymmetric amide anion, such as fluorosulfonyl(trifluoromethylsulfonyl) amide, has the possibility to be a molten salt electrolyte for a lithium secondary battery. The alkali metal molten salt containing lithium and the cesium cation can be compared to a conventional organic electrolyte and room temperature electrolyte at the same temperature due to its reduced melting point. The alkali metal molten salt has a much higher viscosity and lower ionic conductivity than the ionic liquid with the same mole composition of the lithium cation. The alkali metal molten salt also has a higher charge transfer resistance of the lithium metal. However, it shows a higher capacity for the LiFePO4 half-cell than an ionic liquid electrolyte. This superiority is remarkable when using a thick LiFePO4 composite sheet. This indicates that the alkali metal molten salt would have specific transport behavior for the lithium cation in the LiFePO4 composite electrode.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [21] Creating a model of diffusion deposition of metal coatings from melts of low-melting metals
    Sivenkov, A. V.
    Nikitina, V. O.
    Serdiuk, N. A.
    Konchus, D. A.
    Pryakhin, E. I.
    INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, AUTOMATION AND CONTROL SYSTEMS 2018, 2019, 560
  • [22] Electrodeposited tin coating as negative electrode material for lithium-ion battery in room temperature molten salt
    Fung, YS
    Zhu, DR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) : A319 - A324
  • [23] Stabilize garnet/electrode interface via low-melting polymer layer in solid-state lithium metal battery
    Chen, Hong
    Bai, Fan
    Li, Yingxiang
    Deng, Junwen
    Liao, Shijun
    Zhang, Tao
    ELECTROCHIMICA ACTA, 2022, 429
  • [24] CREEP STRENGTH OF LOW-MELTING METALS AND ALLOYS AT ROOM TEMPERATURE .2.
    PELZEL, E
    METALL, 1968, 22 (12): : 1189 - &
  • [25] CREEP STRENGTH OF LOW-MELTING METALS AND ALLOYS AT ROOM TEMPERATURE .I.
    PELZEL, E
    METALL, 1968, 22 (08): : 801 - &
  • [26] Membrane-Free Alkali Metal-Iodide Battery with a Molten Salt
    Lee, Juhan
    Monrrabal-Marquez, Gleidys
    Sarma, Martins
    Lappan, Tobias
    Hofstetter, Yvonne Jasmin
    Trtik, Pavel
    Landgraf, Steffen
    Ding, Wenjin
    Kumar, Sumit
    Vaynzof, Yana
    Weber, Norbert
    Weier, Tom
    ENERGY TECHNOLOGY, 2023, 11 (07)
  • [27] ALKALI NITRITE MOLTEN-SALT FOR USE IN INTERMEDIATE TEMPERATURE LITHIUM CELLS
    PORIS, J
    RAISTRICK, ID
    HUGGINS, RA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) : C128 - C128
  • [28] Aluminum Anodization in the Low-Melting LiAlBr4-NaAlCl4-KAlCl4 Molten Salt
    Wang, C.
    Hussey, C. L.
    MOLTEN SALTS AND IONIC LIQUIDS 19, 2014, 64 (04): : 257 - 265
  • [29] Rechargeable, Lithium-ion Molten Salt Battery for High Temperature Applications
    Caja, Josip
    Dunstan, T. Don J.
    Caja, Mario
    LITHIUM-ION BATTERIES -AND- NON-AQUEOUS ELECTROLYTES FOR LITHIUM BATTERIES - PRIME 2012, 2013, 50 (26): : 3 - 11
  • [30] Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt
    Nakagawa, H
    Izuchi, S
    Kuwana, K
    Nukuda, T
    Aihara, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) : A695 - A700