Lithium Molten Salt Battery at Near Room Temperature Using Low-Melting Alkali Metal Melts

被引:2
|
作者
Kubota, Keigo [1 ]
Matsumoto, Hajime [1 ]
机构
[1] Adv Ind Sci & Technol AIST, Res Inst Electrochem Energy, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
基金
日本科学技术振兴机构;
关键词
SECONDARY BATTERY; ELECTROLYTE;
D O I
10.1149/07301.0095ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Low-melting alkali metal salts containing the asymmetric amide anion, such as fluorosulfonyl(trifluoromethylsulfonyl) amide, has the possibility to be a molten salt electrolyte for a lithium secondary battery. The alkali metal molten salt containing lithium and the cesium cation can be compared to a conventional organic electrolyte and room temperature electrolyte at the same temperature due to its reduced melting point. The alkali metal molten salt has a much higher viscosity and lower ionic conductivity than the ionic liquid with the same mole composition of the lithium cation. The alkali metal molten salt also has a higher charge transfer resistance of the lithium metal. However, it shows a higher capacity for the LiFePO4 half-cell than an ionic liquid electrolyte. This superiority is remarkable when using a thick LiFePO4 composite sheet. This indicates that the alkali metal molten salt would have specific transport behavior for the lithium cation in the LiFePO4 composite electrode.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [11] Room temperature molten salts as lithium battery electrolyte
    Garcia, B
    Lavallée, S
    Perron, G
    Michot, C
    Armand, M
    ELECTROCHIMICA ACTA, 2004, 49 (26) : 4583 - 4588
  • [12] Uranium and neodymium partitioning in alkali chloride melts using low-melting gallium-based alloys
    Melchakov, Stanislav Yu.
    Maltsev, Dmitry S.
    Volkovich, Vladimir A.
    Yamshchikov, Leonid F.
    Lisienko, Dmitry G.
    Osipenko, Aleksandr G.
    Rusakov, Mikhail A.
    NUKLEONIKA, 2015, 60 (04) : 915 - 920
  • [13] A solid-state lithium metal battery with extended cycling and rate performance using a low-melting alloy interface
    Luo, Tingting
    Wang, Ling
    Dai, Lei
    Luo, Jiayan
    Liu, Shan
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (03) : 1011 - 1017
  • [14] SANS studies of nanostructured low-melting metals at room temperature
    Naberezhnov, A. A.
    Borisov, S. A.
    Fokin, A., V
    Islamov, A. Kh
    Kuklin, A., I
    Kumzerov, Yu A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (06): : 690 - 697
  • [15] Ionothermal Synthesis of Metal-Organic Frameworks Using Low-Melting Metal Salt Precursors
    Azbell, Tyler J. J.
    Pitt, Tristan A. A.
    Bollmeyer, Melissa M. M.
    Cong, Christina
    Lancaster, Kyle M. M.
    Milner, Phillip J. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (17)
  • [16] Prediction of Melting Temperature and Latent Heat for Low-melting Metal PCMs
    Pan Aigang
    Wang Junbiao
    Zhang Xianjie
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (04) : 873 - 879
  • [17] Prediction of melting temperature and latent heat for low-melting metal PCMs
    Pan A.
    Wang J.
    Zhang X.
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2016, 45 (04): : 874 - 880
  • [18] Development of low-melting point molten salt electrolytes for rechargeable lithium-aluminum/iron-disulfide batteries
    Lafrenière, S
    TamizhMani, G
    Savadogo, O
    NEW MATERIALS FOR FUEL CELL AND MODERN BATTERY SYSTEMS II, 1997, : 461 - 475
  • [19] Vacuum package using anodic bonding assisted by the reflow of low-melting temperature metal
    Hoang Manh Chu
    Hung Vu Ngoc
    Kazuhiro Hane
    International Journal of Precision Engineering and Manufacturing, 2014, 15 : 695 - 701
  • [20] Vacuum Package Using Anodic Bonding Assisted by the Reflow of Low-Melting Temperature Metal
    Hoang Manh Chao
    Hung Vu Ngoc
    Hane, Kazuhiro
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2014, 15 (04) : 695 - 701