ON THE VON NEUMANN AND FRANK-WOLFE ALGORITHMS WITH AWAY STEPS

被引:12
|
作者
Pena, Javier [1 ]
Rodriguez, Daniel [2 ]
Soheili, Negar [3 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Univ Illinois, Coll Business Adm, Chicago, IL 60607 USA
关键词
von Neumann; Frank-Wolfe; away steps; linear convergence; coordinate descent; COMPLEXITY THEORY; CONDITION NUMBER;
D O I
10.1137/15M1009937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The von Neumann algorithm is a simple coordinate-descent algorithm to determine whether the origin belongs to a polytope generated by a finite set of points. When the origin is in the interior of the polytope, the algorithm generates a sequence of points in the polytope that converges linearly to zero. The algorithm's rate of convergence depends on the radius of the largest ball around the origin contained in the polytope. We show that under the weaker condition that the origin is in the polytope, possibly on its boundary, a variant of the von Neumann algorithm that includes away steps generates a sequence of points in the polytope that converges linearly to zero. The new algorithm's rate of convergence depends on a certain geometric parameter of the polytope that extends the above radius but is always positive. Our linear convergence result and geometric insights also extend to a variant of the Frank-Wolfe algorithm with away steps for minimizing a convex quadratic function over a polytope.
引用
收藏
页码:499 / 512
页数:14
相关论文
共 50 条
  • [1] ACCELERATED FRANK-WOLFE ALGORITHMS
    MEYER, GGL
    [J]. SIAM JOURNAL ON CONTROL, 1974, 12 (04): : 655 - 663
  • [2] Avoiding bad steps in Frank-Wolfe variants
    Rinaldi, Francesco
    Zeffiro, Damiano
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) : 225 - 264
  • [3] Avoiding bad steps in Frank-Wolfe variants
    Francesco Rinaldi
    Damiano Zeffiro
    [J]. Computational Optimization and Applications, 2023, 84 : 225 - 264
  • [4] Frank-Wolfe Algorithms for Saddle Point Problems
    Gidel, Gauthier
    Jebara, Tony
    Lacoste-Julien, Simon
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 362 - 371
  • [5] Self-Concordant Analysis of Frank-Wolfe Algorithms
    Dvurechensky, Pavel
    Ostroukhov, Petr
    Safin, Kamil
    Shtern, Shimrit
    Staudigl, Mathias
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [6] Restarting Frank-Wolfe
    Kerdreux, Thomas
    d'Aspremont, Alexandre
    Pokutta, Sebastian
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [7] Frank-Wolfe Style Algorithms for Large Scale Optimization
    Ding, Lijun
    Udell, Madeleine
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 215 - 245
  • [8] Self-Concordant Analysis of Frank-Wolfe Algorithms
    Dvurechensky, Pavel
    Ostroukhov, Petr
    Safin, Kamil
    Shtern, Shimrit
    Staudigl, Mathias
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [9] An away-step Frank-Wolfe algorithm for constrained multiobjective optimization
    Goncalves, Douglas S.
    Goncalves, Max L. N.
    Melo, Jefferson G.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (03) : 759 - 781
  • [10] One-sided Frank-Wolfe algorithms for saddle problems
    Kolmogorov, Vladimir
    Pock, Thomas
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139