Restarting Frank-Wolfe

被引:0
|
作者
Kerdreux, Thomas [1 ]
d'Aspremont, Alexandre [2 ]
Pokutta, Sebastian [3 ]
机构
[1] ENS, INRIA, Paris, France
[2] ENS, CNRS, Paris, France
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional Gradients (aka Frank-Wolfe algorithms) form a classical set of methods for constrained smooth convex minimization due to their simplicity, the absence of projection step, and competitive numerical performance. While the vanilla Frank-Wolfe algorithm only ensures a worst-case rate of O(1/epsilon), various recent results have shown that for strongly convex functions, the method can be slightly modified to achieve linear convergence. However, this still leaves a huge gap between sublinear O(1/epsilon) convergence and linear O(log 1/epsilon) convergence to reach an epsilon-approximate solution. Here, we present a new variant of Conditional Gradients, that can dynamically adapt to the function's geometric properties using restarts and thus smoothly interpolates between the sublinear and linear regimes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Restarting Frank-Wolfe: Faster Rates under Holderian Error Bounds
    Kerdreux, Thomas
    D'Aspremont, Alexandre
    Pokutta, Sebastian
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (03) : 799 - 829
  • [2] Federated Frank-Wolfe Algorithm
    Dadras, Ali
    Banerjee, Sourasekhar
    Prakhya, Karthik
    Yurtsever, Alp
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 58 - 75
  • [3] On Frank-Wolfe and Equilibrium Computation
    Abernethy, Jacob
    Wang, Jun-Kun
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [4] ACCELERATED FRANK-WOLFE ALGORITHMS
    MEYER, GGL
    [J]. SIAM JOURNAL ON CONTROL, 1974, 12 (04): : 655 - 663
  • [5] CCCP is Frank-Wolfe in disguise
    Yurtsever, Alp
    Sra, Suvrit
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [6] On Extensions of the Frank-Wolfe Theorems
    Zhi-Quan Luo
    Shuzhong Zhang
    [J]. Computational Optimization and Applications, 1999, 13 : 87 - 110
  • [7] A GENERALIZATION OF THE FRANK-WOLFE THEOREM
    PEROLD, AF
    [J]. MATHEMATICAL PROGRAMMING, 1980, 18 (02) : 215 - 227
  • [8] Frank-Wolfe with Subsampling Oracle
    Kerdreux, Thomas
    Pedregosa, Fabian
    d'Aspremont, Alexandre
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] On extensions of the Frank-Wolfe theorems
    Luo, ZQ
    Zhang, SZ
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 13 (1-3) : 87 - 110
  • [10] One Sample Stochastic Frank-Wolfe
    Zhang, Mingrui
    Shen, Zebang
    Mokhtari, Aryan
    Hassani, Hamed
    Karbasi, Amin
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4012 - 4022