Self-Concordant Analysis of Frank-Wolfe Algorithms

被引:0
|
作者
Dvurechensky, Pavel [1 ,2 ,3 ]
Ostroukhov, Petr [4 ]
Safin, Kamil [4 ]
Shtern, Shimrit [5 ]
Staudigl, Mathias [6 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
[3] Inst Informat Transmiss Problems RAS, Moscow, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[5] Technion Israel Inst Technol, Haifa, Israel
[6] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
关键词
OPTIMIZATION; CONVERGENCE; COMPLEXITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-Concordant Analysis of Frank-Wolfe Algorithms
    Dvurechensky, Pavel
    Ostroukhov, Petr
    Safin, Kamil
    Shtern, Shimrit
    Staudigl, Mathias
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [2] Generalized self-concordant analysis of Frank-Wolfe algorithms
    Dvurechensky, Pavel
    Safin, Kamil
    Shtern, Shimrit
    Staudigl, Mathias
    MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 255 - 323
  • [3] Generalized self-concordant analysis of Frank–Wolfe algorithms
    Pavel Dvurechensky
    Kamil Safin
    Shimrit Shtern
    Mathias Staudigl
    Mathematical Programming, 2023, 198 : 255 - 323
  • [4] A Newton Frank-Wolfe method for constrained self-concordant minimization
    Liu, Deyi
    Cevher, Volkan
    Tran-Dinh, Quoc
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (02) : 273 - 299
  • [5] SCALABLE FRANK-WOLFE ON GENERALIZED SELF-CONCORDANT FUNCTIONS VIA SIMPLE STEPS
    Carderera, Alejandro
    Besançon, Mathieu
    Pokutta, Sebastian
    SIAM Journal on Optimization, 2024, 34 (03) : 2231 - 2258
  • [6] Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions
    Carderera, Alejandro
    Besancon, Mathieu
    Pokutta, Sebastian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] A Newton Frank–Wolfe method for constrained self-concordant minimization
    Deyi Liu
    Volkan Cevher
    Quoc Tran-Dinh
    Journal of Global Optimization, 2022, 83 : 273 - 299
  • [8] ACCELERATED FRANK-WOLFE ALGORITHMS
    MEYER, GGL
    SIAM JOURNAL ON CONTROL, 1974, 12 (04): : 655 - 663
  • [9] Frank-Wolfe Algorithms for Saddle Point Problems
    Gidel, Gauthier
    Jebara, Tony
    Lacoste-Julien, Simon
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 362 - 371
  • [10] ON THE VON NEUMANN AND FRANK-WOLFE ALGORITHMS WITH AWAY STEPS
    Pena, Javier
    Rodriguez, Daniel
    Soheili, Negar
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 499 - 512