Self-Concordant Analysis of Frank-Wolfe Algorithms

被引:0
|
作者
Dvurechensky, Pavel [1 ,2 ,3 ]
Ostroukhov, Petr [4 ]
Safin, Kamil [4 ]
Shtern, Shimrit [5 ]
Staudigl, Mathias [6 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
[3] Inst Informat Transmiss Problems RAS, Moscow, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[5] Technion Israel Inst Technol, Haifa, Israel
[6] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
关键词
OPTIMIZATION; CONVERGENCE; COMPLEXITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Boosting Frank-Wolfe by Chasing Gradients
    Combettes, CyrilleW.
    Pokutta, Sebastian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [32] Apprenticeship Learning via Frank-Wolfe
    Zahavy, Tom
    Cohen, Alon
    Kaplan, Haim
    Mansour, Yishay
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6720 - 6728
  • [33] The Frank-Wolfe Algorithm: A Short Introduction
    Pokutta S.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2024, 126 (1) : 3 - 35
  • [34] Barrier Frank-Wolfe for Marginal Inference
    Krishnan, Rahul G.
    Lacoste-Julien, Simon
    Sontag, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [35] Boosting Frank-Wolfe by Chasing Gradients
    Combettes, CyrilleW.
    Pokutta, Sebastian
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [36] Learning Infinite RBMs with Frank-Wolfe
    Ping, Wei
    Liu, Qiang
    Ihler, Alexander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [37] ACCELERATING CONVERGENCE OF THE FRANK-WOLFE ALGORITHM
    WEINTRAUB, A
    ORTIZ, C
    GONZALEZ, J
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1985, 19 (02) : 113 - 122
  • [38] Online Frank-Wolfe with Arbitrary Delays
    Wan, Yuanyu
    Tu, Wei-Wei
    Zhang, Lijun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [39] Improved local models and new Bell inequalities via Frank-Wolfe algorithms
    Designolle, Sebastien
    Iommazzo, Gabriele
    Besancon, Mathieu
    Knebel, Sebastian
    Gelss, Patrick
    Pokutta, Sebastian
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [40] Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets
    Kerdreux, Thomas
    Liu, Lewis
    Julien, Simon Lacoste
    Scieur, Damien
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139