Cell size distribution in random tessellations of space

被引:0
|
作者
Pineda, E
Bruna, P
Crespo, D
机构
[1] Univ Politecn Cataluna, ESAB, Dept Fis & Engn Nucl, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, EPSC, Dept Fis Aplicada, Castelldefels 08860, Spain
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random subdivisions in a D-dimensional Euclidean space are commonly observed in many scientific fields, such as metallurgy, geology, biology, and even, in the case of large D, in subjects related to information codification. This paper presents an analytical approximation of the size probability distribution in space subdivisions generated by random point processes, which include the well-known cases of the Poisson-Voronoi and the Johnson-Mehl cellular structures. Based on the calculations of Gilbert [Ann. Math. Stat. 33, 958 (1962)] and an assumption for the distribution shape, the cell size distributions are obtained in a general way for a very wide range of random space subdivisions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dimension Reduction by Random Hyperplane Tessellations
    Plan, Yaniv
    Vershynin, Roman
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (02) : 438 - 461
  • [22] FIBER PROCESSES GENERATED BY RANDOM TESSELLATIONS
    MECKE, J
    ACTA STEREOLOGICA, VOL 8, NOS 1 AND 2: PROCEEDINGS OF THE FIFTH EUROPEAN CONGRESS FOR STEREOLOGY, 1989, : 665 - 670
  • [23] MATSCHINSKI IDENTITY AND DUAL RANDOM TESSELLATIONS
    MILES, RE
    JOURNAL OF MICROSCOPY-OXFORD, 1988, 151 : 187 - 190
  • [24] Sharp Estimates on Random Hyperplane Tessellations
    Dirksen, Sjoerd
    Mendelson, Shahar
    Stollenwerk, Alexander
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (04): : 1396 - 1419
  • [25] Asymptotics for Voronoi tessellations on random samples
    McGivney, K
    Yukich, JE
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (02) : 273 - 288
  • [26] Random tessellations marked with crystallographic orientations
    Pawlas, Zbynek
    Karafiatova, Iva
    Heller, Ludek
    SPATIAL STATISTICS, 2020, 39
  • [27] Faces in random great hypersphere tessellations
    Kabluchko, Zakhar
    Thale, Christoph
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26 : 1 - 35
  • [28] Dimension Reduction by Random Hyperplane Tessellations
    Yaniv Plan
    Roman Vershynin
    Discrete & Computational Geometry, 2014, 51 : 438 - 461
  • [29] Random tessellations associated with max-stable random fields
    Dombry, Clement
    Kabluchko, Zakhar
    BERNOULLI, 2018, 24 (01) : 30 - 52
  • [30] On tessellations of random maps and the tg-recurrence
    Chapuy, Guillaume
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (1-2) : 477 - 500