Cell size distribution in random tessellations of space

被引:0
|
作者
Pineda, E
Bruna, P
Crespo, D
机构
[1] Univ Politecn Cataluna, ESAB, Dept Fis & Engn Nucl, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, EPSC, Dept Fis Aplicada, Castelldefels 08860, Spain
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random subdivisions in a D-dimensional Euclidean space are commonly observed in many scientific fields, such as metallurgy, geology, biology, and even, in the case of large D, in subjects related to information codification. This paper presents an analytical approximation of the size probability distribution in space subdivisions generated by random point processes, which include the well-known cases of the Poisson-Voronoi and the Johnson-Mehl cellular structures. Based on the calculations of Gilbert [Ann. Math. Stat. 33, 958 (1962)] and an assumption for the distribution shape, the cell size distributions are obtained in a general way for a very wide range of random space subdivisions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cell size distribution in random tessellations of space (vol 70, artn no 066119, 2007)
    Pineda, Eloi
    Bruna, Pere
    Crespo, Daniel
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [2] Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization
    Farjas, Jordi
    Roura, Pere
    PHYSICAL REVIEW B, 2008, 78 (14)
  • [3] RANDOM LAGUERRE TESSELLATIONS
    Lautensack, Claudia
    Zuyev, Sergei
    ADVANCES IN APPLIED PROBABILITY, 2008, 40 (03) : 630 - 650
  • [4] Random Conical Tessellations
    Daniel Hug
    Rolf Schneider
    Discrete & Computational Geometry, 2016, 56 : 395 - 426
  • [5] RANDOM TESSELLATIONS IN RD
    MOLLER, J
    ADVANCES IN APPLIED PROBABILITY, 1989, 21 (01) : 37 - 73
  • [6] Random cluster tessellations
    Matzutt, Kai
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (03): : 171 - 177
  • [7] Random Conical Tessellations
    Hug, Daniel
    Schneider, Rolf
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (02) : 395 - 426
  • [8] Cell Shape Analysis of Random Tessellations Based on Minkowski Tensors
    Klatt, Michael A.
    Last, Guenter
    Mecke, Klaus
    Redenbach, Claudia
    Schaller, Fabian M.
    Schroder-Turk, Gerd E.
    TENSOR VALUATIONS AND THEIR APPLICATIONS IN STOCHASTIC GEOMETRY AND IMAGING, 2017, 2177 : 385 - 421
  • [9] Characterization of Gaussian distribution on a Hilbert space from samples of random size
    Rao, B. L. S. Prakasa
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 209 - 214
  • [10] The iteration of random tessellations and a construction of a homogeneous process of cell divisions
    Mecke, Joseph
    Nagel, Werner
    Weiss, Viola
    ADVANCES IN APPLIED PROBABILITY, 2008, 40 (01) : 49 - 59