Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying

被引:80
|
作者
Ciftci, Deniz [1 ]
Ubeyitogullari, Ali [2 ]
Huerta, Raquel Razzera [1 ]
Ciftci, Ozan N. [2 ]
Flores, Rolando A. [2 ,3 ]
Saldana, Marleny D. A. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
[2] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68588 USA
[3] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Las Cruces, NM 88003 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Aerogel; Cellulose nanofiber; Freeze drying; Lupin hull; Supercritical CO2 drying; FLEXIBLE AEROGELS; HYDROLYSIS; SURFACE; LONG;
D O I
10.1016/j.supflu.2017.04.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, aerogels were prepared from cellulose nanofiber hydrogels obtained via ultrasonication of subcritical water-assisted treated lupin hull. The SCCO2 drying and freeze drying were evaluated for aerogel formation with initial hydrogel concentrations in the range of 1-2 wt%. The effects of concentration and drying method on resultant aerogel properties (density, porosity, specific surface area, pore size and pore volume), crystallinity, thermal behavior and morphology were investigated. The SCCO2 drying was more advantageous in aerogel formation, allowing the production of aerogels with lower density (0.009-0.05 g/cm(3)), and higher surface area (72-115 m(2)/g) compared to freeze-dried aerogels at each concentration level investigated. The aerogel prepared from 1 wt% hydrogel concentration using SCCO2 drying provided the lowest density of 0.009 g/cm(3), the highest porosity of 99% and the highest specific surface area of 115 m(2)/g with high crystallinity index (72%) and thermal stability with degradation temperature of 310 degrees C.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [31] Effect of supercritical CO2 drying variables and gel composition on the textural properties of cellulose aerogels
    Machado, Noelia D.
    Goni, Maria L.
    Ganan, Nicolas A.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2025, 215
  • [32] Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology
    Wang, Xiaoyu
    Zhang, Yang
    Jiang, Hua
    Song, Yuxuan
    Zhou, Zhaobing
    Zhao, Hua
    MATERIALS LETTERS, 2016, 183 : 179 - 182
  • [33] Preparation of BaTiO3 powders using supercritical CO2 drying of gels
    Novak, Z
    Knez, Z
    Drofenik, M
    Ban, I
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 285 (1-3) : 44 - 49
  • [34] Preparation of organic mesoporous gel by supercritical/freeze drying
    Tamon, H
    Ishizaka, H
    DRYING TECHNOLOGY, 1999, 17 (7-8) : 1653 - 1665
  • [35] Aerogel preparation from short cellulose nanofiber of the Eucalyptus species
    Zanini, Marcia
    Lavoratti, Alessandra
    Zimmermann, Matheus V. G.
    Galiotto, Deise
    Matana, Fernando
    Baldasso, Camila
    Zattera, Ademir J.
    JOURNAL OF CELLULAR PLASTICS, 2017, 53 (05) : 503 - 512
  • [36] Amine-impregnated elastic carbon nanofiber aerogel templated by bacterial cellulose for CO2 adsorption and separation
    Bao, Sifan
    Zheng, Xudong
    Xu, Zihuai
    Ji, Biao
    Yang, Zhouzhou
    Sun, Wei
    Mei, Jinfeng
    Rong, Jian
    Li, Zhongyu
    FUEL, 2025, 381
  • [37] Hydrogels and aerogels of cellulose nanofiber derived from barley straw with addition of chitosan using high-intensity ultrasound and supercritical CO2 drying
    Liu, Zhengjie
    Khurshid, Kiran
    Saldana, Marleny D. A.
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 216
  • [38] Use of supercritical CO2 to improve the quality of lupin protein isolate
    Dominguez-Valencia, Ruben
    Bermudez, Roberto
    Pateiro, Mirian
    Purrinos, Laura
    Bou, Ricard
    Lorenzo, Jose M.
    FOOD CHEMISTRY, 2024, 460
  • [39] Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2
    Sui, RH
    Rizkalla, AS
    Charpentier, PA
    LANGMUIR, 2006, 22 (09) : 4390 - 4396
  • [40] Composite Aerogel Comprised of Sodium Alginate and Bentonite via Supercritical CO2 Drying: An Efficient Adsorbent for Lysozyme
    Zhao, Jie
    Cao, Liqin
    Dong, Yong
    GELS, 2022, 8 (06)