Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying

被引:80
|
作者
Ciftci, Deniz [1 ]
Ubeyitogullari, Ali [2 ]
Huerta, Raquel Razzera [1 ]
Ciftci, Ozan N. [2 ]
Flores, Rolando A. [2 ,3 ]
Saldana, Marleny D. A. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
[2] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68588 USA
[3] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Las Cruces, NM 88003 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Aerogel; Cellulose nanofiber; Freeze drying; Lupin hull; Supercritical CO2 drying; FLEXIBLE AEROGELS; HYDROLYSIS; SURFACE; LONG;
D O I
10.1016/j.supflu.2017.04.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, aerogels were prepared from cellulose nanofiber hydrogels obtained via ultrasonication of subcritical water-assisted treated lupin hull. The SCCO2 drying and freeze drying were evaluated for aerogel formation with initial hydrogel concentrations in the range of 1-2 wt%. The effects of concentration and drying method on resultant aerogel properties (density, porosity, specific surface area, pore size and pore volume), crystallinity, thermal behavior and morphology were investigated. The SCCO2 drying was more advantageous in aerogel formation, allowing the production of aerogels with lower density (0.009-0.05 g/cm(3)), and higher surface area (72-115 m(2)/g) compared to freeze-dried aerogels at each concentration level investigated. The aerogel prepared from 1 wt% hydrogel concentration using SCCO2 drying provided the lowest density of 0.009 g/cm(3), the highest porosity of 99% and the highest specific surface area of 115 m(2)/g with high crystallinity index (72%) and thermal stability with degradation temperature of 310 degrees C.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [21] Effects of reaction parameters on the preparation of P4VP/SiO2 composite aerogel via supercritical CO2 drying
    Yang, Xule
    Wang, Wei
    Cao, Liqin
    Wang, Jide
    POLYMER COMPOSITES, 2019, 40 (11) : 4205 - 4214
  • [22] Supercritical drying media modification for silica aerogel preparation
    Yoda, Satoshi
    Ohshima, Satoshi
    Journal of Non-Crystalline Solids, 1999, 248 (02): : 224 - 234
  • [23] Supercritical drying media modification for silica aerogel preparation
    Yoda, S
    Ohshima, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 248 (2-3) : 224 - 234
  • [24] DRYING SUPERCRITICAL CO2 DEMANDS CARE
    WALLACE, CB
    OIL & GAS JOURNAL, 1985, 83 (25) : 98 - 104
  • [25] Supercritical CO2 drying of food matrices
    Zambon, A.
    Vizzotto, T. M.
    Morbiato, G.
    Toffoletto, M.
    Poloniato, G.
    Dall'Acqua, S.
    De Bernard, M.
    Spilimbergo, S.
    IDS'2018: 21ST INTERNATIONAL DRYING SYMPOSIUM, 2018, : 17 - 23
  • [26] Atenolol uptake from pharmaceutical sources onto carbon aerogel prepared by supercritical CO2 drying
    Momcilovic, Milan Z.
    Nesic, Aleksandra
    Gurikov, Pavel
    Schroeter, Baldur
    Dodevski, Vladimir
    Bojic, Aleksandar Lj.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 350
  • [27] Resorcinol/formaldehyde aerogel fine powders with nanopore structure prepared by supercritical CO2 drying techniques
    Lee, JY
    Lee, KN
    Lee, HJ
    Kim, JH
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2002, 8 (06) : 546 - 551
  • [28] A Continuous Extraction and Pumpless Supercritical CO2 Drying System for Laboratory-Scale Aerogel Production
    Lazar, Istvan
    Fabian, Istvan
    GELS, 2016, 2 (04)
  • [29] Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying
    Guastaferro, Mariangela
    Baldino, Lucia
    Reverchon, Ernesto
    Cardea, Stefano
    GELS, 2021, 7 (04)
  • [30] Amine grafted cellulose aerogel for CO2 capture
    Xing Jiang
    Yong Kong
    Huiru Zou
    Zhiyang Zhao
    Ya Zhong
    Xiaodong Shen
    Journal of Porous Materials, 2021, 28 : 93 - 97