Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying

被引:80
|
作者
Ciftci, Deniz [1 ]
Ubeyitogullari, Ali [2 ]
Huerta, Raquel Razzera [1 ]
Ciftci, Ozan N. [2 ]
Flores, Rolando A. [2 ,3 ]
Saldana, Marleny D. A. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
[2] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68588 USA
[3] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Las Cruces, NM 88003 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Aerogel; Cellulose nanofiber; Freeze drying; Lupin hull; Supercritical CO2 drying; FLEXIBLE AEROGELS; HYDROLYSIS; SURFACE; LONG;
D O I
10.1016/j.supflu.2017.04.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, aerogels were prepared from cellulose nanofiber hydrogels obtained via ultrasonication of subcritical water-assisted treated lupin hull. The SCCO2 drying and freeze drying were evaluated for aerogel formation with initial hydrogel concentrations in the range of 1-2 wt%. The effects of concentration and drying method on resultant aerogel properties (density, porosity, specific surface area, pore size and pore volume), crystallinity, thermal behavior and morphology were investigated. The SCCO2 drying was more advantageous in aerogel formation, allowing the production of aerogels with lower density (0.009-0.05 g/cm(3)), and higher surface area (72-115 m(2)/g) compared to freeze-dried aerogels at each concentration level investigated. The aerogel prepared from 1 wt% hydrogel concentration using SCCO2 drying provided the lowest density of 0.009 g/cm(3), the highest porosity of 99% and the highest specific surface area of 115 m(2)/g with high crystallinity index (72%) and thermal stability with degradation temperature of 310 degrees C.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [1] Preparation of alumina aerogel films by low temperature CO2 supercritical drying process
    G. S. Grader
    Y. Rifkin
    Y. Cohen
    S. Keysar
    Journal of Sol-Gel Science and Technology, 1997, 8 : 825 - 829
  • [2] Preparation of monolithic ferrite (III) oxide aerogel by CO2 supercritical drying process
    Ren, Hong-Bo
    Zhang, Lin
    Wan, Xiao-Bo
    Du, Ai-Ming
    Xiu, Peng
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2007, 41 (03): : 288 - 291
  • [3] Preparation of alumina aerogel films by low temperature CO2 supercritical drying process
    Grader, GS
    Rifkin, Y
    Cohen, Y
    Keysar, S
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) : 825 - 829
  • [4] Preparation of WO3 aerogel catalysts using supercritical CO2 drying
    Novak, Z
    Kotnik, P
    Knez, Z
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 350 : 308 - 313
  • [5] Preparation of Alumina Aerogel Films by Low Temperature CO2 Supercritical Drying Process
    G.S. Grader
    Y. Rifkin
    Y. Cohen
    S. Keysar
    Journal of Sol-Gel Science and Technology, 1997, 8 : 825 - 829
  • [6] Carbon Nanofiber Aerogel Fabricated by Supercritical Drying and Application in Li-O2/CO2 Battery
    Sakinah, Shofiyah
    Kunanusont, Nattanai
    Shimoyama, Yusuke
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2021, 54 (05) : 239 - 247
  • [7] Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying
    Tang, Q
    Wang, T
    JOURNAL OF SUPERCRITICAL FLUIDS, 2005, 35 (01): : 91 - 94
  • [8] CO2 supercritical drying process for silica-titania aerogel monoliths
    Rogacki, G
    Suh, DJ
    INZYNIERIA CHEMICZNA I PROCESOWA, 2001, 22 (3E): : 1219 - 1224
  • [10] DRYING SUPERCRITICAL CO2
    CONNOR, TE
    OIL & GAS JOURNAL, 1985, 83 (40) : 24 - 24