Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks

被引:18
|
作者
Khalili, Nadieh [1 ,2 ]
Turk, E. [3 ,4 ]
Benders, M. J. N. L. [3 ,4 ]
Moeskops, P. [5 ]
Claessens, N. H. P. [3 ,4 ]
de Heus, R. [6 ]
Franx, A. [6 ]
Wagenaar, N. [3 ,4 ]
Breur, J. M. P. J. [3 ,4 ]
Viergever, M. A. [1 ,2 ,4 ]
Isgum, I. [1 ,2 ,4 ]
机构
[1] Univ Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Wilhelmina Childrens Hosp, Dept Neonatol, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Utrecht, Netherlands
[5] Eindhoven Univ Technol, Dept Biomed Engn, Med Image Anal, Eindhoven, Netherlands
[6] Univ Med Ctr Utrecht, Dept Obstet, Utrecht, Netherlands
关键词
Brain extraction; Neonatal MRI; Fetal MRI; Skull stripping; Brain segmentation; Deep learning; Intracranial volume segmentation; BRAIN SEGMENTATION; INFANT;
D O I
10.1016/j.nicl.2019.102061
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23-45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Automatic Segmentation of the Intracranial Volume in Fetal MR Images
    Khalili, N.
    Moeskops, P.
    Claessens, N. H. P.
    Scherpenzeel, S.
    Turk, E.
    de Heus, R.
    Benders, M. J. N. L.
    Viergever, M. A.
    Pluim, J. P. W.
    Isgum, I.
    [J]. FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 42 - 51
  • [2] The potential for clinical application of automatic quantification of olfactory bulb volume in MRI scans using convolutional neural networks
    Postma, Elbrich M.
    Noothout, Julia M. H.
    Boek, Wilbert M.
    Joshi, Akshita
    Herrmann, Theresa
    Hummel, Thomas
    Smeets, Paul A. M.
    Isgum, Ivana
    Boesveldt, Sanne
    [J]. NEUROIMAGE-CLINICAL, 2023, 38
  • [3] Automatic placental and fetal volume estimation by a convolutional neural network
    Kulseng, Carl Petter Skaar
    Hillestad, Vigdis
    Eskild, Anne
    Gjesdal, Kjell-Inge
    [J]. PLACENTA, 2023, 134 : 23 - 29
  • [4] Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
    Khalili, N.
    Lessmann, N.
    Turk, E.
    Claessens, N.
    de Heus, R.
    Kolk, T.
    Viergever, M. A.
    Benders, M. J. N. L.
    Isgum, I.
    [J]. MAGNETIC RESONANCE IMAGING, 2019, 64 : 77 - 89
  • [5] Automatic bolus tracking in abdominal CT scans with convolutional neural networks
    Li, Angela T.
    Noel, Peter B.
    Shapira, Nadav
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (05) : 2780 - 2790
  • [6] Refined Automatic Brain Tumor Classification Using Hybrid Convolutional Neural Networks for MRI Scans
    AlTahhan, Fatma E.
    Khouqeer, Ghada A.
    Saadi, Sarmad
    Elgarayhi, Ahmed
    Sallah, Mohammed
    [J]. DIAGNOSTICS, 2023, 13 (05)
  • [7] Automatic Segmentation of Intracranial Hemorrhage in Computed Tomography Scans with Convolution Neural Networks
    Xu, Weijin
    Sha, Zhuang
    Tan, Tao
    Liu, Wentao
    Chen, Yifu
    Li, Zhanying
    Pan, Xipeng
    Jiang, Rongcai
    Yang, Huihua
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (04) : 575 - 581
  • [8] Automatic ear detection and feature extraction using Geometric Morphometrics and convolutional neural networks
    Cintas, Celia
    Quinto-Sanchez, Mirsha
    Acuna, Victor
    Paschetta, Carolina
    de Azevedo, Soledad
    Silva de Cerqueira, Caio Cesar
    Ramallo, Virginia
    Gallo, Carla
    Poletti, Giovanni
    Bortolini, Maria Catira
    Canizales-Quinteros, Samuel
    Rothhammer, Francisco
    Bedoya, Gabriel
    Ruiz-Linares, Andres
    Gonzalez-Jose, Rolando
    Delrieux, Claudio
    [J]. IET BIOMETRICS, 2017, 6 (03) : 211 - 223
  • [9] Seismic Structural Curvature Volume Extraction With Convolutional Neural Networks
    Ao, Yile
    Lu, Wenkai
    Jiang, Bowu
    Monkam, Patrice
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7370 - 7384
  • [10] Automatic Nasopharyngeal Carcinoma Segmentation in MR Images with Convolutional Neural Networks
    Ma, Zongqing
    Wu, Xi
    Zhou, Jiliu
    [J]. 2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 181 - 184