Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks

被引:18
|
作者
Khalili, Nadieh [1 ,2 ]
Turk, E. [3 ,4 ]
Benders, M. J. N. L. [3 ,4 ]
Moeskops, P. [5 ]
Claessens, N. H. P. [3 ,4 ]
de Heus, R. [6 ]
Franx, A. [6 ]
Wagenaar, N. [3 ,4 ]
Breur, J. M. P. J. [3 ,4 ]
Viergever, M. A. [1 ,2 ,4 ]
Isgum, I. [1 ,2 ,4 ]
机构
[1] Univ Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Wilhelmina Childrens Hosp, Dept Neonatol, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Utrecht, Netherlands
[5] Eindhoven Univ Technol, Dept Biomed Engn, Med Image Anal, Eindhoven, Netherlands
[6] Univ Med Ctr Utrecht, Dept Obstet, Utrecht, Netherlands
关键词
Brain extraction; Neonatal MRI; Fetal MRI; Skull stripping; Brain segmentation; Deep learning; Intracranial volume segmentation; BRAIN SEGMENTATION; INFANT;
D O I
10.1016/j.nicl.2019.102061
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23-45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks
    Xiaoming Liu
    Shuxu Guo
    Bingtao Yang
    Shuzhi Ma
    Huimao Zhang
    Jing Li
    Changjian Sun
    Lanyi Jin
    Xueyan Li
    Qi Yang
    Yu Fu
    [J]. Journal of Digital Imaging, 2018, 31 : 748 - 760
  • [32] Automatic Feature Extraction of Channel Gains of Wireless Body Area Network using Convolutional Neural Networks
    Sano, Shintaro
    Aoyagi, Takahiro
    [J]. 2020 14TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION COMMUNICATION TECHNOLOGY (ISMICT), 2020, : 62 - 66
  • [33] Automatic segmentation of medical images using convolutional neural networks
    Mesbahi, Sourour
    Yazid, Hedi
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [34] Automatic detection and classification of leukocytes using convolutional neural networks
    Zhao, Jianwei
    Zhang, Minshu
    Zhou, Zhenghua
    Chu, Jianjun
    Cao, Feilong
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (08) : 1287 - 1301
  • [35] Automatic detection and classification of leukocytes using convolutional neural networks
    Jianwei Zhao
    Minshu Zhang
    Zhenghua Zhou
    Jianjun Chu
    Feilong Cao
    [J]. Medical & Biological Engineering & Computing, 2017, 55 : 1287 - 1301
  • [36] Automatic Segmentation Using Convolutional Neural Networks in Prostate Cancer
    Vu, C. C.
    Zamdborg, L.
    Siddiqui, Z. A.
    Gustafson, G. S.
    Krauss, D. J.
    Guerrero, T. M.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S61 - S61
  • [37] Automatic Detection of Contouring Errors Using Convolutional Neural Networks
    Rhee, D.
    Cardenas, C.
    Elhalawani, H.
    McCarroll, R.
    Zhang, L.
    Yang, J.
    Beadle, B.
    Court, L.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E282 - E282
  • [38] Molecular graph encoding convolutional neural networks for automatic chemical feature extraction
    Xu, Youjun
    Pei, Jianfeng
    Lai, Luhua
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [39] Automatic target recognition using deep convolutional neural networks
    Nasrabadi, Nasser M.
    Kazemi, Hadi
    Iranmanesh, Mehdi
    [J]. AUTOMATIC TARGET RECOGNITION XXVIII, 2018, 10648
  • [40] Automatic detection of contouring errors using convolutional neural networks
    Rhee, Dong Joo
    Cardenas, Carlos E.
    Elhalawani, Hesham
    McCarroll, Rachel
    Zhang, Lifei
    Yang, Jinzhong
    Garden, Adam S.
    Peterson, Christine B.
    Beadle, Beth M.
    Court, Laurence E.
    [J]. MEDICAL PHYSICS, 2019, 46 (11) : 5086 - 5097