Automatic placental and fetal volume estimation by a convolutional neural network

被引:7
|
作者
Kulseng, Carl Petter Skaar [1 ]
Hillestad, Vigdis [2 ,3 ]
Eskild, Anne [3 ,4 ]
Gjesdal, Kjell-Inge [1 ,2 ]
机构
[1] Sunnmore MR Klin, Langelandsvegen 15, N-6010 Alesund, Norway
[2] Akershus Univ Hosp, Dept Diagnost Imaging, POB 1000, N-1478 Lorenskog, Norway
[3] Akershus Univ Hosp, Dept Obstet & Gynecol, POB 1000, N-1478 Lorenskog, Norway
[4] Univ Oslo, Inst Clin Med, POB 1171, N-0318 Oslo, Norway
关键词
Magnetic resonance imaging; Placenta; Deep learning; Volume; Pregnancy; Fetus; Artificial intelligence; ASSOCIATION;
D O I
10.1016/j.placenta.2023.02.009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: We aimed to develop an artificial intelligence (AI) deep learning algorithm to efficiently estimate placental and fetal volumes from magnetic resonance (MR) scans. Methods: Manually annotated images from an MRI sequence was used as input to the neural network DenseVNet. We included data from 193 normal pregnancies at gestational week 27 and 37. The data were split into 163 scans for training, 10 scans for validation and 20 scans for testing. The neural network segmentations were compared to the manual annotation (ground truth) using the Dice Score Coefficient (DSC). Results: The mean ground truth placental volume at gestational week 27 and 37 was 571 cm3 (Standard Deviation (SD) 293 cm3) and 853 cm3 (SD 186 cm3), respectively. Mean fetal volume was 979 cm3 (SD 117 cm3) and 2715 cm3 (SD 360 cm3). The best fitting neural network model was attained at 22,000 training iterations with mean DSC 0.925 (SD 0.041). The neural network estimated mean placental volumes at gestational week 27-870 cm3 (SD 202 cm3) (DSC 0.887 (SD 0.034), and to 950 cm3 (SD 316 cm3) at gestational week 37 (DSC 0.896 (SD 0.030)). Mean fetal volumes were 1292 cm3 (SD 191 cm3) and 2712 cm3 (SD 540 cm3), with mean DSC of 0.952 (SD 0.008) and 0.970 (SD 0.040). The time spent for volume estimation was reduced from 60 to 90 min by manual annotation, to less than 10 s by the neural network. Conclusion: The correctness of neural network volume estimation is comparable to human performance; the efficiency is substantially improved.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [1] Automatic Classification of Fetal Heart Rate Based on Convolutional Neural Network
    Li, Jianqiang
    Chen, Zhuang-Zhuang
    Huang, Luxiang
    Fang, Min
    Li, Bing
    Fu, Xianghua
    Wang, Huihui
    Zhao, Qingguo
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02) : 1394 - 1401
  • [2] Automatic estimation of rice grain number based on a convolutional neural network
    Deng, Ruoling
    Qi, Long
    Pan, Weijie
    Wang, Zhiqi
    Fu, Dengbin
    Yang, Xiuli
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39 (06): : 1034 - 1044
  • [3] Automatic estimation of rice grain number based on a convolutional neural network
    Deng, Ruoling
    Qi, Long
    Pan, Weijie
    Wang, Zhiqi
    Fu, Dengbin
    Yang, Xiuli
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (06) : 1034 - 1044
  • [4] Deep Learning Based Automatic Liver Volume Estimation and Segmentation via U-net Convolutional Neural Network
    Marlatt, B.
    Pettit, R.
    Havelka, J.
    Corr, S. J.
    Rana, A.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2021, 21 : 797 - 797
  • [5] A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI
    Dou, Haoran
    Karimi, Davood
    Rollins, Caitlin K.
    Ortinau, Cynthia M.
    Vasung, Lana
    Velasco-Annis, Clemente
    Ouaalam, Abdelhakim
    Yang, Xin
    Ni, Dong
    Gholipour, Ali
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (04) : 1123 - 1133
  • [6] Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
    Khalili, Nadieh
    Turk, E.
    Benders, M. J. N. L.
    Moeskops, P.
    Claessens, N. H. P.
    de Heus, R.
    Franx, A.
    Wagenaar, N.
    Breur, J. M. P. J.
    Viergever, M. A.
    Isgum, I.
    NEUROIMAGE-CLINICAL, 2019, 24
  • [7] Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
    Guan, Zenglun
    Alfarzaeai, Murad S.
    Hu, Eryi
    Alshmeri, Taqiaden
    Peng, Wang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 279 - 306
  • [8] Automatic Semivariogram Modeling by Convolutional Neural Network
    Jo, Honggeun
    Pyrcz, Michael J.
    MATHEMATICAL GEOSCIENCES, 2022, 54 (01) : 177 - 205
  • [9] Automatic Windowing for MRI With Convolutional Neural Network
    Zhao, Xiaole
    Zhang, Tao
    Liu, Hangfei
    Zhu, Gaiyan
    Zou, Xueming
    IEEE ACCESS, 2019, 7 : 68594 - 68606
  • [10] Automatic Semivariogram Modeling by Convolutional Neural Network
    Honggeun Jo
    Michael J. Pyrcz
    Mathematical Geosciences, 2022, 54 : 177 - 205