Minimally informative prior distributions for non-parametric Bayesian analysis

被引:13
|
作者
Bush, Christopher A. [2 ]
Lee, Juhee [1 ]
MacEachern, Steven N.
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Novartis Pharmaceut, E Hanover, NJ USA
基金
美国国家科学基金会;
关键词
Bayes; Dirichlet process; Improper prior; Local mass; Mixed modes analysis; Reference prior; INFERENCE; MIXTURES; MODEL;
D O I
10.1111/j.1467-9868.2009.00735.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We address the problem of how to conduct a minimally informative, non-parametric Bayesian analysis. The central question is how to devise a model so that the posterior distribution satisfies a few basic properties. The concept of 'local mass' provides the key to the development of the limiting Dirichlet process model. This model is then used to provide an engine for inference in the compound decision problem and for multiple-comparisons inference in a one-way analysis-of-variance setting. Our analysis in this setting may be viewed as a limit of the analyses that were developed by Escobar and by Gopalan and Berry. Computations for the analysis are described, and the predictive performance of the model is compared with that of mixture of Dirichlet processes models.
引用
收藏
页码:253 / 268
页数:16
相关论文
共 50 条
  • [31] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [32] Spatial non-parametric Bayesian clustered coefficients
    Areed, Wala Draidi
    Price, Aiden
    Thompson, Helen
    Malseed, Reid
    Mengersen, Kerrie
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] Non-Parametric Quantile Selection for Extreme Distributions
    Zin, Wan Zawiah Wan
    Jemain, Abdul Aziz
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (02) : 454 - 466
  • [34] UNIFIED DERIVATION OF SOME NON-PARAMETRIC DISTRIBUTIONS
    SARNDAL, CE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1964, 59 (308) : 1042 - &
  • [35] A Bayesian non-parametric approach to survival analysis using polya trees
    Muliere, P
    Walker, S
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (03) : 331 - 340
  • [36] Non-parametric inference of adverse events under informative censoring
    Nishikawa, Masako
    Tango, Toshiro
    Ogawa, Makiko
    [J]. STATISTICS IN MEDICINE, 2006, 25 (23) : 3981 - 4003
  • [37] A full Bayesian non-parametric analysis involving a neutral to the right process
    Walker, S
    Damien, P
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 669 - 680
  • [38] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [39] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatarinova, Tatiana
    Neely, Michael
    Bartroff, Jay
    van Guilder, Michael
    Yamada, Walter
    Bayard, David
    Jelliffe, Roger
    Leary, Robert
    Chubatiuk, Alyona
    Schumitzky, Alan
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (02) : 189 - 199
  • [40] ONLY NON-INFORMATIVE BAYESIAN PRIOR DISTRIBUTIONS AGREE WITH THE GUM TYPE A EVALUATIONS OF INPUT QUANTITIES
    Kacker, Raghu
    Kessel, Ruediger
    Sommer, Klaus-Dieter
    [J]. ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING IX, 2012, 84 : 216 - 223