A full Bayesian non-parametric analysis involving a neutral to the right process

被引:18
|
作者
Walker, S
Damien, P
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
beta-Stacy process; Gibbs sampler; infinitely divisible law; latent variables; Levy process; neutral to the right process;
D O I
10.1111/1467-9469.00128
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Implementation of a full Bayesian non-parametric analysis involving neutral to the right processes (apart from the special case of the Dirichlet process) has been difficult for two reasons: first, the posterior distributions are complex and therefore only Bayes estimates (posterior expectations) have previously been presented; secondly, it is difficult to obtain an interpretation for the parameters of a neutral to the right process. In this paper we extend Ferguson & Phadia (1979) by presenting a general method for specifying the prior mean and variance of a neutral to the right process, providing the interpretation of the parameters. Additionally, we provide the basis for a full Bayesian analysis, via simulation, from the posterior process using a hybrid of new algorithms that is applicable to a large class of neutral to the right processes (Ferguson & Phadia only provide posterior means). The ideas are exemplified through illustrative analyses.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 50 条
  • [1] Non-parametric Bayesian analysis of clustered survival data
    Lee, Jaeyong
    [J]. STATISTICS, 2008, 42 (06) : 515 - 526
  • [2] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [3] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [4] Minimally informative prior distributions for non-parametric Bayesian analysis
    Bush, Christopher A.
    Lee, Juhee
    MacEachern, Steven N.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 253 - 268
  • [5] Bayesian analysis for mixtures of discrete distributions with a non-parametric component
    Alhaji, Baba B.
    Dai, Hongsheng
    Hayashi, Yoshiko
    Vinciotti, Veronica
    Harrison, Andrew
    Lausen, Berthold
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1369 - 1385
  • [6] Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces
    Berchuck, Samuel I.
    Janko, Mark
    Medeiros, Felipe A.
    Pan, William
    Mukherjee, Sayan
    [J]. BAYESIAN ANALYSIS, 2022, 17 (02): : 435 - 464
  • [7] Estimation of entropy and extropy based on right censored data: A Bayesian non-parametric approach
    Al-Labadi, Luai
    Tahir, Muhammad
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2022, 28 (04): : 319 - 328
  • [8] A Bayesian non-parametric comparison of two treatments
    Damien, P
    Walker, S
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 51 - 56
  • [9] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [10] A Bayesian Non-parametric Viewpoint to Visual Tracking
    Wang, Yi
    Li, Zhidong
    Wang, Yang
    Chen, Fang
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 482 - 488