Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns

被引:2
|
作者
Lai, Fang-, I [1 ]
Yang, Jui-Fu [2 ]
Chen, Wei-Chun [3 ]
Hsieh, Dan-Hua [1 ]
Lin, Woei-Tyng [1 ]
Hsu, Yu-Chao [4 ,5 ]
Kuo, Shou-Yi [2 ,4 ]
机构
[1] Yuan Ze Univ, Elect Engn Program C, 135 Yuan Tung Rd, Chungli 32003, Taiwan
[2] Chang Gung Univ, Dept Elect Engn, 259 Wen Hwa 1st Rd, Taoyuan 33302, Taiwan
[3] Natl Appl Res Labs, Taiwan Instrument Res Inst, 20 R&D Rd V1,Hsinchu Sci Pk, Hsinchu 30076, Taiwan
[4] Chang Gung Mem Hosp, Dept Urol, 5 Fuxing St, Taoyuan 33305, Taiwan
[5] Chang Gung Univ, Sch Med, 259 Wen Hwa 1st Rd, Taoyuan 33302, Taiwan
关键词
indium nitride; nanocolumns; photoluminescence;
D O I
10.3390/catal11060737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (V-N) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Time-resolved photoluminescence of undoped InP
    Keyes, B.M.
    Dunlavy, D.J.
    Ahrenkiel, R.K.
    Shaw, G.
    Summers, G.P.
    Tzafaras, N.
    Lentz, C.
    Journal of Applied Physics, 1994, 75 (08): : 4249 - 4251
  • [12] TIME-RESOLVED PHOTOLUMINESCENCE STUDY OF INSE
    BREBNER, JL
    STEINER, T
    THEWALT, MLW
    SOLID STATE COMMUNICATIONS, 1985, 56 (11) : 929 - 931
  • [13] TIME-RESOLVED PHOTOLUMINESCENCE IN CHALCOGENIDE GLASSES
    MURAYAMA, K
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1983, 59-6 (DEC) : 983 - 990
  • [14] TIME-RESOLVED PHOTOLUMINESCENCE OF POROUS SILICON
    ANDRIANOV, AV
    KOVALEV, DI
    SHUMAN, VB
    YAROSHETSKII, ID
    SEMICONDUCTORS, 1993, 27 (01) : 71 - 73
  • [15] TIME-RESOLVED PHOTOLUMINESCENCE OF UNDOPED INP
    KEYES, BM
    DUNLAVY, DJ
    AHRENKIEL, RK
    SHAW, G
    SUMMERS, GP
    TZAFARAS, N
    LENTZ, C
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (08) : 4249 - 4251
  • [16] TIME-RESOLVED PHOTOLUMINESCENCE IN AMORPHOUS PHOSPHORUS
    SOBIESIERSKI, Z
    PHILLIPS, RT
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1987, 90 (1-3) : 457 - 460
  • [17] TIME-RESOLVED PHOTOLUMINESCENCE OF UNPINNED GAAS
    KIRCHNER, PD
    KASH, JA
    WILMSEN, CW
    WARREN, AC
    WOODALL, JM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (11) : C623 - C623
  • [18] Time-resolved photoluminescence in porous silicon
    Kudrna, J
    Bartosek, P
    Trojanek, F
    Pelant, I
    Maly, P
    JOURNAL OF LUMINESCENCE, 1997, 72-4 : 347 - 349
  • [19] Time-Resolved Photoluminescence in Gold Nanoantennas
    Sakat, Emilie
    Bargigia, Ilaria
    Celebrano, Michele
    Cattoni, Andrea
    Collin, Stephane
    Brida, Daniele
    Finazzi, Marco
    D'Andrea, Cosimo
    Biagioni, Paolo
    ACS PHOTONICS, 2016, 3 (08): : 1489 - 1493
  • [20] Time-resolved photoluminescence characterizes semiconductors
    Wahl, M
    LASER FOCUS WORLD, 2000, 36 (07): : S15 - S18