A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces

被引:21
|
作者
Reich, Simeon [1 ]
Truong Minh Tuyen [2 ]
Nguyen Thi Thu Thuy [3 ]
Mai Thi Ngoc Ha [4 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[4] Thai Nguyen Univ Agr & Forestry, Thai Nguyen, Vietnam
基金
以色列科学基金会;
关键词
Hilbert space; Metric projection; Nonexpansive mapping; Fixed point; SHRINKING PROJECTION METHOD; STRONG-CONVERGENCE THEOREM; FEASIBILITY PROBLEM;
D O I
10.1007/s11075-021-01144-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the split common fixed point problem with multiple output sets in Hilbert spaces. In order to solve this problem, we propose a new algorithm and establish a strong convergence theorem for it. Moreover, using our method, we also remove the assumptions imposed on the norms of the transfer operators.
引用
收藏
页码:1031 / 1047
页数:17
相关论文
共 50 条
  • [41] The split common fixed point problem with multiple output sets for demicontractive mappings
    Cui, Huanhuan
    Wang, Fenghui
    OPTIMIZATION, 2024, 73 (06) : 1933 - 1947
  • [42] A new iterative method for the split common fixed point problem in Hilbert spaces
    Wang, Fenghui
    OPTIMIZATION, 2017, 66 (03) : 407 - 415
  • [43] The split feasibility problem with multiple output sets in Hilbert spaces
    Reich, Simeon
    Minh Tuyen Truong
    Thi Ngoc Ha Mai
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2335 - 2353
  • [44] The split feasibility problem with multiple output sets in Hilbert spaces
    Simeon Reich
    Minh Tuyen Truong
    Thi Ngoc Ha Mai
    Optimization Letters, 2020, 14 : 2335 - 2353
  • [45] An algorithm for a class of variational inequalities with the split common fixed point problem with multiple output sets constraints
    Van, Le Huynh My
    Anh, Tran Viet
    OPTIMIZATION, 2023,
  • [46] A Cyclic Algorithm for the Split Common Fixed Point Problem of Demicontractive Mappings in Hilbert Spaces
    Tang, Yu-Chao
    Peng, Ji-Gen
    Liu, Li-Wei
    MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (04) : 457 - 466
  • [47] SELF-ADAPTIVE ALGORITHMS FOR AN EQUILIBRIUM SPLIT PROBLEM IN HILBERT SPACES
    Sun, Wenlong
    Lu, Gang
    Jin, Yuanfeng
    Park, Choonkil
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1581 - 1596
  • [48] A unified framework for the two-sets split common fixed point problem in Hilbert spaces
    Yao, Yonghong
    Leng, Limin
    Postolache, Mihai
    Zheng, Xiaoxue
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6113 - 6125
  • [49] A fixed point method for solving a split feasibility problem in Hilbert spaces
    Qin, Xiaolong
    Wang, Lin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 315 - 325
  • [50] A fixed point method for solving a split feasibility problem in Hilbert spaces
    Xiaolong Qin
    Lin Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 315 - 325