SELF-ADAPTIVE ALGORITHMS FOR AN EQUILIBRIUM SPLIT PROBLEM IN HILBERT SPACES

被引:1
|
作者
Sun, Wenlong [1 ]
Lu, Gang [2 ]
Jin, Yuanfeng [3 ]
Park, Choonkil [4 ]
机构
[1] Shenyang Univ Technol, Dept Math, Sch Sci, Shenyang 110870, Peoples R China
[2] Guangzhou Coll Technol & Business, Div Fdn Teaching, Guangzhou 510850, Peoples R China
[3] Yanbian Univ, Dept Math, Yanji 133001, Peoples R China
[4] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
Equilibrium split problem; quasi-pseudo-contractive operator; self-adaptive algorithm; FIXED-POINT PROBLEM; ITERATIVE ALGORITHMS; AUXILIARY PRINCIPLE; FEASIBILITY PROBLEM; OPERATORS;
D O I
10.7153/jmi-2021-15-108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and study iterative algorithms for solving the split problem: find a common element x(dagger) epsilon C satisfying Theta(x(dagger),y)+ < Fx(dagger), y- x(dagger)> + Psi( x(dagger), y)-Psi( x(dagger), x(dagger)) >= 0, for all y epsilon C and Au epsilon Fix(S), where S be an L-Lipschitzian quasi-pseudo-contractive operator. Weak and strong convergence theorems are given under some mild assumptions.
引用
收藏
页码:1581 / 1596
页数:16
相关论文
共 50 条