Bivariate sub-Gaussian model for stock index returns

被引:4
|
作者
Jablonska-Sabuka, Matylda [1 ]
Teuerle, Marek [2 ]
Wylomanska, Agnieszka [2 ]
机构
[1] Lappeenranta Univ Technol, POB 20, Lappeenranta 53851, Finland
[2] Wroclaw Univ Sci & Technol, Hugo Steinhaus Ctr, Fac Pure & Appl Math, Wyb Wyspiarlskiego 27, PL-50370 Wroclaw, Poland
关键词
Nonparametric methods; Characteristic function; Bivariate sub-Gaussian distribution; alpha-stable process; EMPIRICAL CHARACTERISTIC FUNCTION; OF-FIT TESTS; ALPHA-STABLE INNOVATIONS; DISTRIBUTIONS; PARAMETERS; DEPENDENCE; VARIANCE; REGIME;
D O I
10.1016/j.physa.2017.05.080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:628 / 637
页数:10
相关论文
共 50 条
  • [1] SUB-GAUSSIAN MEAN ESTIMATORS
    Devroye, Luc
    Lerasle, Matthieu
    Lugosi, Gabor
    Olivetra, Roberto I.
    ANNALS OF STATISTICS, 2016, 44 (06): : 2695 - 2725
  • [2] CERTAIN PROPERTIES OF GAUSSIAN AND SUB-GAUSSIAN SEQUENCES
    YADRENKO, OM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (10): : 21 - 23
  • [3] Generalized sub-Gaussian fractional Brownian motion queueing model
    Yamnenko, R.
    Kozachenko, Yu
    Bushmitch, D.
    QUEUEING SYSTEMS, 2014, 77 (01) : 75 - 96
  • [4] Generalized sub-Gaussian fractional Brownian motion queueing model
    R. Yamnenko
    Yu. Kozachenko
    D. Bushmitch
    Queueing Systems, 2014, 77 : 75 - 96
  • [6] EXPONENTIAL INTEGRABILITY OF SUB-GAUSSIAN VECTORS
    FUKUDA, R
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 85 (04) : 505 - 521
  • [7] Uniform convergence of sub-Gaussian integrals
    Pashko, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 43 (04) : 650 - 655
  • [8] Sub-gaussian inequality on tent spaces
    Labeye-Voisin, E
    STUDIA MATHEMATICA, 2003, 155 (01) : 23 - 36
  • [9] Corrupted Sensing with Sub-Gaussian Measurements
    Chen, Jinchi
    Liu, Yulong
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 516 - 520
  • [10] Phase retrieval for sub-Gaussian measurements
    Gao, Bing
    Liu, Haixia
    Wang, Yang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 53 (53) : 95 - 115