Bivariate sub-Gaussian model for stock index returns

被引:4
|
作者
Jablonska-Sabuka, Matylda [1 ]
Teuerle, Marek [2 ]
Wylomanska, Agnieszka [2 ]
机构
[1] Lappeenranta Univ Technol, POB 20, Lappeenranta 53851, Finland
[2] Wroclaw Univ Sci & Technol, Hugo Steinhaus Ctr, Fac Pure & Appl Math, Wyb Wyspiarlskiego 27, PL-50370 Wroclaw, Poland
关键词
Nonparametric methods; Characteristic function; Bivariate sub-Gaussian distribution; alpha-stable process; EMPIRICAL CHARACTERISTIC FUNCTION; OF-FIT TESTS; ALPHA-STABLE INNOVATIONS; DISTRIBUTIONS; PARAMETERS; DEPENDENCE; VARIANCE; REGIME;
D O I
10.1016/j.physa.2017.05.080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:628 / 637
页数:10
相关论文
共 50 条
  • [21] Unconditional Convergence of Sub-Gaussian Random Series
    Giorgobiani, G.
    Kvaratskhelia, V.
    Menteshashvili, M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (01) : 92 - 101
  • [22] INEQUALITIES FOR THE DISTRIBUTIONS OF FUNCTIONALS OF SUB-GAUSSIAN VECTORS
    Buldygin, V. V.
    Pechuk, E. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 80 : 23 - 33
  • [23] Sub-Gaussian Model Based LDPC Decoder for SαS Noise Channels
    Topor, Iulian
    Chitre, Mandar
    Motani, Mehul
    OCEANS, 2012 - YEOSU, 2012,
  • [24] Sub-Gaussian Error Bounds for Hypothesis Testing
    Wang, Yan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3050 - 3055
  • [25] PARAMETER ESTIMATION OF SUB-GAUSSIAN STABLE DISTRIBUTIONS
    Omelchenko, Vadym
    KYBERNETIKA, 2014, 50 (06) : 929 - 949
  • [26] THE SUB-GAUSSIAN NORM OF A BINARY RANDOM VARIABLE
    Buldygin, V. V.
    Moskvichova, K. K.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 86 : 28 - 42
  • [27] On simulating exchangeable sub-Gaussian random vectors
    Mohammadpour, A
    Soltani, AR
    STATISTICS & PROBABILITY LETTERS, 2004, 69 (01) : 29 - 36
  • [28] Sub-gaussian measures and associated semilinear problems
    Fougeres, Pierre
    Roberto, Cyril
    Zegarlinski, Boguslaw
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (02) : 305 - 350
  • [29] SUB-GAUSSIAN ESTIMATORS OF THE MEAN OF A RANDOM VECTOR
    Lugosi, Gabor
    Mendelson, Shahar
    ANNALS OF STATISTICS, 2019, 47 (02): : 783 - 794
  • [30] Optimal Sub-Gaussian Mean Estimation in R
    Lee, Jasper C. H.
    Valiant, Paul
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 672 - 683