The Lempert function of the symmetrized polydisc in higher dimensions is not a distance

被引:23
|
作者
Nikolov, Nikolai [1 ]
Pflug, Peter
Zwonek, Wlodzimierz
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Carl von Ossietzky Univ Oldenburg, Fachbereich Math, D-26111 Oldenburg, Germany
[3] Jagiellonian Univ, Inst Matemat, PL-30059 Krakow, Poland
关键词
symmetrized polydisc; Caratheodory distance and metric; Kobayashi distance and metric; Lempert function;
D O I
10.1090/S0002-9939-07-08817-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Lempert function of the symmetrized polydisc in dimension greater than two is not a distance.
引用
收藏
页码:2921 / 2928
页数:8
相关论文
共 50 条
  • [1] The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros
    Nikolai Nikolov
    Włodzimierz Zwonek
    [J]. Archiv der Mathematik, 2006, 87 : 412 - 416
  • [2] The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros
    Nikolov, Nikolai
    Zwonek, Wlodzimierz
    [J]. ARCHIV DER MATHEMATIK, 2006, 87 (05) : 412 - 416
  • [3] Lifting Maps from the Symmetrized Polydisc in Small Dimensions
    Nikolov, Nikolai
    Thomas, Pascal J.
    Tran, Duc-Anh
    [J]. Complex Analysis and Operator Theory, 2016, 10 (05) : 921 - 941
  • [4] Lifting Maps from the Symmetrized Polydisc in Small Dimensions
    Nikolai Nikolov
    Pascal J. Thomas
    Duc-Anh Tran
    [J]. Complex Analysis and Operator Theory, 2016, 10 : 921 - 941
  • [5] Geometry of the symmetrized polydisc
    Edigarian, A
    Zwonek, W
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (04) : 364 - 374
  • [6] Geometry of the symmetrized polydisc
    Armen Edigarian
    Włodzimierz Zwonek
    [J]. Archiv der Mathematik, 2005, 84 : 364 - 374
  • [7] A certain rational function and operator theory on the symmetrized polydisc
    Bisai, Bappa
    Pal, Sourav
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
  • [8] CHARACTERIZATIONS OF SYMMETRIZED POLYDISC
    Gorai, Sushil
    Sarkar, Jaydeb
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (03): : 391 - 397
  • [9] Characterizations of symmetrized polydisc
    Sushil Gorai
    Jaydeb Sarkar
    [J]. Indian Journal of Pure and Applied Mathematics, 2016, 47 : 391 - 397
  • [10] Kahler submanifolds of the symmetrized polydisc
    Su, Guicong
    Tang, Yanyan
    Tu, Zhenhan
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (04) : 387 - 394