CHARACTERIZATIONS OF SYMMETRIZED POLYDISC

被引:2
|
作者
Gorai, Sushil [1 ]
Sarkar, Jaydeb [2 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, W Bengal, India
[2] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
来源
关键词
Symmetrized polydisc; Schur theorem; positive definite matrix; NEVANLINNA-PICK PROBLEM; BIDISC;
D O I
10.1007/s13226-016-0174-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma(n), n >= 2, denote the symmetrized polydisc in C-n, and Gamma(1) be the closed unit disc in C. We provide some characterizations of elements in Gn. In particular, an element ( s(1),..., s(n- 1), p) epsilon C-n is in Gamma(n) if and only if s(j) = beta(j) + (beta(n-jp)) over bar, j = 1,..., n - 1, for some (beta(1),..., beta(n-1)) epsilon Gamma(n-1), and vertical bar p vertical bar <= 1.
引用
收藏
页码:391 / 397
页数:7
相关论文
共 50 条
  • [1] Characterizations of symmetrized polydisc
    Sushil Gorai
    Jaydeb Sarkar
    [J]. Indian Journal of Pure and Applied Mathematics, 2016, 47 : 391 - 397
  • [2] Characterizations of the symmetrized polydisc via another family of domains
    Pal, Sourav
    Roy, Samriddho
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (06)
  • [3] Geometry of the symmetrized polydisc
    Edigarian, A
    Zwonek, W
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (04) : 364 - 374
  • [4] Geometry of the symmetrized polydisc
    Armen Edigarian
    Włodzimierz Zwonek
    [J]. Archiv der Mathematik, 2005, 84 : 364 - 374
  • [5] Kahler submanifolds of the symmetrized polydisc
    Su, Guicong
    Tang, Yanyan
    Tu, Zhenhan
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (04) : 387 - 394
  • [6] Estimates of the Caratheodory metric on the symmetrized polydisc
    Nikolov, Nikolai
    Pflug, Peter
    Thomas, Pascal J.
    Zwonek, Wlodzimierz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 140 - 148
  • [7] Canonical Decomposition of Operators Associated with the Symmetrized Polydisc
    Pal, Sourav
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 931 - 943
  • [8] Canonical Decomposition of Operators Associated with the Symmetrized Polydisc
    Sourav Pal
    [J]. Complex Analysis and Operator Theory, 2018, 12 : 931 - 943
  • [9] Toeplitz operators and Hilbert modules on the symmetrized polydisc
    Bhattacharyya, Tirthankar
    Das, B. Krishna
    Sau, Haripada
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2022,
  • [10] The fundamental operator tuples associated with the symmetrized polydisc
    Bisai, Bappa
    Pal, Sourav
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 349 - 362