Characterizations of symmetrized polydisc

被引:0
|
作者
Sushil Gorai
Jaydeb Sarkar
机构
[1] Indian Institute of Science Education and Research,Department of Mathematics and Statistics
[2] Statistics and Mathematics Unit,Indian Statistical Institute
关键词
Symmetrized polydisc; Schur theorem; positive definite matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γn, n ≥ 2, denote the symmetrized polydisc in ℂn, and Γ1 be the closed unit disc in ℂ. We provide some characterizations of elements in Γn. In particular, an element (s1,..., sn−1, p) ∈ ℂn is in Γn if and only if sj=βj+βn−j¯p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p$$\end{document}, j = 1,..., n − 1, for some (β1,..., βn−1) ∈ Γn−1, and |p| ≤ 1.
引用
收藏
页码:391 / 397
页数:6
相关论文
共 50 条
  • [1] CHARACTERIZATIONS OF SYMMETRIZED POLYDISC
    Gorai, Sushil
    Sarkar, Jaydeb
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (03): : 391 - 397
  • [2] Characterizations of the symmetrized polydisc via another family of domains
    Pal, Sourav
    Roy, Samriddho
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (06)
  • [3] Geometry of the symmetrized polydisc
    Armen Edigarian
    Włodzimierz Zwonek
    [J]. Archiv der Mathematik, 2005, 84 : 364 - 374
  • [4] Geometry of the symmetrized polydisc
    Edigarian, A
    Zwonek, W
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (04) : 364 - 374
  • [5] Kahler submanifolds of the symmetrized polydisc
    Su, Guicong
    Tang, Yanyan
    Tu, Zhenhan
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (04) : 387 - 394
  • [6] Estimates of the Caratheodory metric on the symmetrized polydisc
    Nikolov, Nikolai
    Pflug, Peter
    Thomas, Pascal J.
    Zwonek, Wlodzimierz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 140 - 148
  • [7] Canonical Decomposition of Operators Associated with the Symmetrized Polydisc
    Sourav Pal
    [J]. Complex Analysis and Operator Theory, 2018, 12 : 931 - 943
  • [8] Canonical Decomposition of Operators Associated with the Symmetrized Polydisc
    Pal, Sourav
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 931 - 943
  • [9] Toeplitz operators and Hilbert modules on the symmetrized polydisc
    Bhattacharyya, Tirthankar
    Das, B. Krishna
    Sau, Haripada
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2022,
  • [10] The fundamental operator tuples associated with the symmetrized polydisc
    Bisai, Bappa
    Pal, Sourav
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 349 - 362