Existence of Periodic Solutions for A Class of p-Laplacian System

被引:0
|
作者
Cao, Fengjuan [1 ]
Han, Zhenlai [1 ]
Zhao, Ping
机构
[1] Univ Jinan, Sch Sci, Jinan 250022, Shandong, Peoples R China
关键词
periodic solutions; p-Laplacian system; topological degree theory; EQUATION;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we systematically explore the periodicity of a class of p-Laplacian system. Sufficient criteria are established for the existence of periodic solutions for such differential system, which generalize some known results. The main method is based on the topological degree theory and the result is new.
引用
收藏
页码:567 / 570
页数:4
相关论文
共 50 条
  • [31] EXISTENCE OF SOLUTIONS FOR A CLASS OF p-LAPLACIAN SYSTEMS WITH IMPULSIVE EFFECTS
    Chen, Peng
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 803 - 828
  • [32] Existence of nonnegative solutions for a class of p-Laplacian equations in RN
    Dai, Shuang
    Yang, Jianfu
    ADVANCED NONLINEAR STUDIES, 2007, 7 (01) : 107 - 129
  • [33] Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
    Wang, Juan
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)
  • [34] An existence result on positive solutions for a class of p-Laplacian systems
    Hai, DD
    Shivaji, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) : 1007 - 1010
  • [35] On existence of weak solutions for a p-Laplacian system at resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 33 - 47
  • [36] On existence of weak solutions for a p-Laplacian system at resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 33 - 47
  • [37] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Pu, Yang
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2016,
  • [38] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [39] Periodic solutions for a Rayleigh system of p-Laplacian type
    Peng, Shiguo
    Zhu, Siming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 274 - 279
  • [40] Existence of periodic solutions for a p-Laplacian neutral functional differential equation
    Liang Feng
    Guo Lixiang
    Lu Shiping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 427 - 436