Nonconstant periodic solutions for a class of ordinary p-Laplacian systems

被引:4
|
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ]
Pu, Yang [1 ,3 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] China West Nomal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
periodic solutions; ordinary p-Laplacian systems; generalized mountain pass theorem; HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1186/s13661-016-0721-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of periodic solutions for a class of ordinary p-Laplacian systems. Our technique is based on the generalized mountain pass theorem of Rabinowitz.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [2] Subharmonic solutions for a class of ordinary p-Laplacian systems∗
    Chun Li
    Ravi P. Agarwal
    Zeng-Qi Ou
    Lithuanian Mathematical Journal, 2018, 58 : 157 - 166
  • [3] Subharmonic solutions for a class of ordinary p-Laplacian systems*
    Li, Chun
    Agarwal, Ravi P.
    Ou, Zeng-Qi
    LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (02) : 157 - 166
  • [4] Infinitely many periodic solutions for ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Tang, Chun-Lei
    ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (04) : 251 - 261
  • [5] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [6] PERIODIC SOLUTIONS FOR AN ORDINARY P-LAPLACIAN SYSTEM
    Zhang, Xingyong
    Tang, Xianhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1369 - 1396
  • [7] Fast homoclinic solutions for a class of ordinary p-Laplacian systems
    Bo Du
    Boundary Value Problems, 2015
  • [8] Fast homoclinic solutions for a class of ordinary p-Laplacian systems
    Du, Bo
    BOUNDARY VALUE PROBLEMS, 2015,
  • [9] Some existence results on periodic solutions of ordinary p-Laplacian systems
    Xu, Bo
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 1228 - 1236
  • [10] Existence of infinitely many periodic solutions for ordinary p-Laplacian systems
    Ma, Shiwang
    Zhang, Yuxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 469 - 479