Nonconstant periodic solutions for a class of ordinary p-Laplacian systems

被引:4
|
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ]
Pu, Yang [1 ,3 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] China West Nomal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
periodic solutions; ordinary p-Laplacian systems; generalized mountain pass theorem; HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1186/s13661-016-0721-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of periodic solutions for a class of ordinary p-Laplacian systems. Our technique is based on the generalized mountain pass theorem of Rabinowitz.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv X.
    Lu S.
    Yan P.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 11 - 18
  • [12] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 35 (1-2) : 11 - 18
  • [13] Existence of Periodic Solutions for a Class of Difference Systems with p-Laplacian
    Chen, Kai
    Zhang, Qiongfen
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [14] Existence of Periodic Solutions for a Class of p-Laplacian Systems with Delay
    Guo, Chengjun
    Ye, Xinjie
    Liu, Junming
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [15] Homoclinic solutions for ordinary p-Laplacian systems
    Lv, Xiang
    Lu, Shiping
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5682 - 5692
  • [16] Multiple periodic solutions of a class of p-Laplacian
    Yang, XJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (01) : 17 - 29
  • [17] Existence of Periodic Solutions for Second-Order Ordinary p-Laplacian Systems
    Wang, Shaomin
    Yang, Cunji
    Cha, Guozhi
    MATHEMATICS, 2024, 12 (08)
  • [18] SOME EXISTENCE RESULTS ON PERIODIC AND SUBHARMONIC SOLUTIONS OF ORDINARY P-LAPLACIAN SYSTEMS
    Zhang, Yuxiang
    Ma, Shiwang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (01): : 251 - 260
  • [19] Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian
    Jebelean, P
    Mawhin, J
    ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 299 - 312
  • [20] An Existence Result on Periodic Solutions of an Ordinary p-Laplacian System
    Zhang, Xingyong
    Zhou, Peixiang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 127 - 135