Simulation on formation process of field-reversed configuration

被引:8
|
作者
Peng, Yue [1 ]
Yang, Yong [1 ]
Jia, Yuesong [2 ]
Rao, Bo [1 ]
Zhang, Ming [1 ]
Wang, Zhijiang [1 ]
Wang, Hongyu [3 ]
Pan, Yuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Anshan Normal Univ, Sch Phys Sci & Technol, Anshan 114005, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
field-reversed configuration; optimization of formation process; MHD simulation; theta-pinch formation; ADIABATIC-COMPRESSION; PLASMA;
D O I
10.1088/1741-4326/ac4869
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Collisional-merging is a way to form high-performance field-reversed configuration (FRC) plasma. An experiment device named HUST-FRC (HFRC) is under construction in Huazhong University of Science and Technology, which will be used to investigate the FRC formation through collisionalmerging. In this research, a magnetohydrodynamics simulation software called USim is used to study the effect of the initial density of plasma, the amplitude of the bias magnetic field, the configuration of the bias field, the rise time of the main field and the magnetic field ripple on the plasma parameters to facilitate the design and operation of HFRC. Preliminary simulation results show that cusp configuration, lower ripple, higher initial density, an initial bias field of -0.15 T or -0.2 T, and a rise time of 4 mu s are conducive to the formation of high-performance FRC plasma in the HFRC device.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Wobble motion on field-reversed configuration plasmas
    Fujimoto, K
    Okada, M
    Gota, H
    Hasegawa, Y
    Fujino, T
    Asai, T
    Takahashi, T
    Nogi, Y
    Ohkuma, Y
    PHYSICS OF PLASMAS, 2005, 12 (10) : 1 - 8
  • [42] Simulations of the Field-Reversed Configuration with the NIMROD Code
    A. I. D. Macnab
    D. C. Barnes
    R. D. Milroy
    C. C. Kim
    C. R. Sovinec
    Journal of Fusion Energy, 2007, 26 : 113 - 117
  • [43] IMPROVED ANALYTIC EQUILIBRIUM FOR A FIELD-REVERSED CONFIGURATION
    STEINHAUER, LC
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12): : 3081 - 3085
  • [44] Rigid-rotor, field-reversed configuration
    Conti, F.
    Wessel, F. J.
    Binderbauer, M. W.
    Bolte, N.
    Giammanco, F.
    Morehouse, M.
    Qerushi, A.
    Rahman, H. U.
    Roche, T.
    Slepchenkov, M.
    PHYSICS OF PLASMAS, 2014, 21 (02)
  • [45] EXPERIMENTAL STUDIES OF FIELD-REVERSED CONFIGURATION TRANSLATION
    REJ, DJ
    ARMSTRONG, WT
    CHRIEN, RE
    KLINGNER, PL
    LINFORD, RK
    MCKENNA, KF
    SHERWOOD, EG
    SIEMON, RE
    TUSZEWSKI, M
    MILROY, RD
    PHYSICS OF FLUIDS, 1986, 29 (03) : 852 - 862
  • [46] Simulations of the field-reversed configuration with the NIMROD code
    Macnab, A. I. D.
    Barnes, D. C.
    Milroy, R. D.
    Kim, C. C.
    Sovinec, C. R.
    JOURNAL OF FUSION ENERGY, 2007, 26 (1-2) : 113 - 117
  • [47] FORMATION STUDIES OF FIELD-REVERSED CONFIGURATIONS IN A SLOW FIELD-REVERSED THETA-PINCH
    SLOUGH, JT
    HOFFMAN, AL
    MILROY, RD
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (04): : 840 - 850
  • [48] Particle-In-Cell Simulation of Field-Reversed Configuration with Adaptive Particle Management
    Nishida, Kento
    Guo, Xuehan
    Horiuchi, Ritoku
    Ono, Yasushi
    PLASMA AND FUSION RESEARCH, 2018, 13
  • [49] Verification of local electrostatic gyrokinetic simulation of driftwave instability in field-reversed configuration
    Sun, Shuying
    Wei, Xishuo
    Lin, Zhihong
    Liu, Pengfei
    Wang, Wenhao
    Xie, Huasheng
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [50] Effects of background neutral particles on a field-reversed configuration plasma in the translation process
    Matsuzawa, Yoshiki
    Asai, Tomohiko
    Takahashi, Tsutomu
    Takahashi, Toshiki
    PHYSICS OF PLASMAS, 2008, 15 (08)