Simulation on formation process of field-reversed configuration

被引:8
|
作者
Peng, Yue [1 ]
Yang, Yong [1 ]
Jia, Yuesong [2 ]
Rao, Bo [1 ]
Zhang, Ming [1 ]
Wang, Zhijiang [1 ]
Wang, Hongyu [3 ]
Pan, Yuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Anshan Normal Univ, Sch Phys Sci & Technol, Anshan 114005, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
field-reversed configuration; optimization of formation process; MHD simulation; theta-pinch formation; ADIABATIC-COMPRESSION; PLASMA;
D O I
10.1088/1741-4326/ac4869
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Collisional-merging is a way to form high-performance field-reversed configuration (FRC) plasma. An experiment device named HUST-FRC (HFRC) is under construction in Huazhong University of Science and Technology, which will be used to investigate the FRC formation through collisionalmerging. In this research, a magnetohydrodynamics simulation software called USim is used to study the effect of the initial density of plasma, the amplitude of the bias magnetic field, the configuration of the bias field, the rise time of the main field and the magnetic field ripple on the plasma parameters to facilitate the design and operation of HFRC. Preliminary simulation results show that cusp configuration, lower ripple, higher initial density, an initial bias field of -0.15 T or -0.2 T, and a rise time of 4 mu s are conducive to the formation of high-performance FRC plasma in the HFRC device.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Internal structure of a field-reversed configuration plasma
    Urano, M
    Takahashi, Y
    Hagi, S
    Suzuki, K
    Takahashi, T
    Nogi, Y
    ICPP 96 CONTRIBUTED PAPERS - PROCEEDINGS OF THE 1996 INTERNATIONAL CONFERENCE ON PLASMA PHYSICS, VOLS 1 AND 2, 1997, : 1198 - 1201
  • [32] A STEADY-STATE FIELD-REVERSED CONFIGURATION
    OKAMOTO, M
    FUSION TECHNOLOGY, 1987, 11 (02): : 444 - 445
  • [33] SPECTROSCOPIC PLASMA TOMOGRAPHY ON FIELD-REVERSED CONFIGURATION
    SUGIMOTO, S
    NIINA, T
    GOTO, S
    JOURNAL OF APPLIED PHYSICS, 1989, 66 (11) : 5228 - 5231
  • [34] Beta value at separatrix of field-reversed configuration
    Ikeyama, Taeko
    Hiroi, Masanori
    Nogi, Yasuyuki
    Ohkuma, Yasunori
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [35] TRANSLATION EXPERIMENTS OF FIELD-REVERSED CONFIGURATION PLASMA
    HIMURA, H
    OKADA, S
    GOTO, S
    FUSION TECHNOLOGY, 1995, 27 : 345 - 348
  • [36] FIELD-REVERSED CONFIGURATION TRANSLATION INTO A COMPRESSION COIL
    CHRIEN, RE
    PHYSICS OF FLUIDS, 1985, 28 (11) : 3426 - 3429
  • [37] Formation of Field-Reversed Configuration by Use of Two Merging Spheromaks with Opposing Toroidal Field
    Ono, Yasushi
    PHYSICS OF PLASMA-DRIVEN ACCELERATORS AND ACCELERATOR-DRIVEN FUSION, 2016, 1721
  • [39] Global stochastic particles in a field-reversed configuration
    Khvesyuk, VI
    Khvesyuk, AV
    Lyakhov, AN
    TECHNICAL PHYSICS LETTERS, 1997, 23 (11) : 833 - 834
  • [40] Rotational stability of a long field-reversed configuration
    Barnes, D. C.
    Steinhauer, L. C.
    PHYSICS OF PLASMAS, 2014, 21 (02)