Simulation on formation process of field-reversed configuration

被引:8
|
作者
Peng, Yue [1 ]
Yang, Yong [1 ]
Jia, Yuesong [2 ]
Rao, Bo [1 ]
Zhang, Ming [1 ]
Wang, Zhijiang [1 ]
Wang, Hongyu [3 ]
Pan, Yuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Anshan Normal Univ, Sch Phys Sci & Technol, Anshan 114005, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
field-reversed configuration; optimization of formation process; MHD simulation; theta-pinch formation; ADIABATIC-COMPRESSION; PLASMA;
D O I
10.1088/1741-4326/ac4869
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Collisional-merging is a way to form high-performance field-reversed configuration (FRC) plasma. An experiment device named HUST-FRC (HFRC) is under construction in Huazhong University of Science and Technology, which will be used to investigate the FRC formation through collisionalmerging. In this research, a magnetohydrodynamics simulation software called USim is used to study the effect of the initial density of plasma, the amplitude of the bias magnetic field, the configuration of the bias field, the rise time of the main field and the magnetic field ripple on the plasma parameters to facilitate the design and operation of HFRC. Preliminary simulation results show that cusp configuration, lower ripple, higher initial density, an initial bias field of -0.15 T or -0.2 T, and a rise time of 4 mu s are conducive to the formation of high-performance FRC plasma in the HFRC device.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] TRANSPORT SIMULATION OF A FIELD-REVERSED CONFIGURATION PLASMA
    SHUMAKER, DE
    FUSION TECHNOLOGY, 1988, 13 (04): : 555 - 576
  • [2] FORMATION OF A FIELD-REVERSED CONFIGURATION BY COALESCENCE OF SPHEROMAKS
    DASGUPTA, B
    SATO, T
    HAYASHI, T
    WATANABE, K
    WATANABE, T
    FUSION TECHNOLOGY, 1995, 27 : 374 - 377
  • [3] FORMATION OF A NEARLY SPHERICAL FIELD-REVERSED CONFIGURATION
    NAKATA, S
    SEKIGUCHI, T
    ISAKA, M
    PHYSICS OF FLUIDS, 1985, 28 (02) : 445 - 448
  • [4] Gyrokinetic simulation of driftwave instability in field-reversed configuration
    Fulton, D. P.
    Lau, C. K.
    Schmitz, L.
    Holod, I.
    Lin, Z.
    Tajima, T.
    Binderbauer, M. W.
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [5] Kinetic simulations of the formation and stability of the field-reversed configuration
    Omelchenko, YA
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1443 - 1451
  • [6] Merging formation and current amplification of field-reversed configuration
    Inomoto, Michiaki
    Ono, Yasushi
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 2 (04) : 424 - 430
  • [7] Anatomy of a field-reversed configuration
    Steinhauer, L. C.
    Roche, T.
    Steinhauer, J. D.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [8] EXPERIMENTS OF A FIELD-REVERSED CONFIGURATION
    WANG, GY
    WANG, SZ
    CUI, HZ
    LIAO, JC
    CHINESE PHYSICS, 1984, 4 (04): : 874 - 878
  • [9] MHD simulation of reflection dynamics of field-reversed configuration plasma
    Kanki, T
    Okada, S
    Goto, S
    PLASMA PHYSICS, 2003, 669 : 753 - 756
  • [10] Hybrid simulation of neutral beam injection into a field-reversed configuration
    Takahashi, T.
    Yamada, Y.
    Kondoh, Y.
    Goto, M.
    Okada, T.
    Hirano, Y.
    Asai, T.
    Takahashi, T.
    Tomita, Y.
    JOURNAL OF PLASMA PHYSICS, 2006, 72 : 891 - 894