Rail rolling contact fatigue formation and evolution with surface defects

被引:47
|
作者
Zhang, S. Y. [1 ,2 ]
Spiryagin, M. [2 ]
Ding, H. H. [1 ]
Wu, Q. [2 ]
Guo, J. [1 ]
Liu, Q. Y. [1 ]
Wang, W. J. [1 ]
机构
[1] Southwest Jiaotong Univ, Tribol Res Inst, State Key Lab Tract Power, Chengdu 610031, Peoples R China
[2] Cent Queensland Univ, Ctr Railway Engn, Rockhampton, Qld, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Surface defect; Rolling contact fatigue; Microstructure evolution; Critical size; WHITE ETCHING LAYER; MICROSTRUCTURE EVOLUTION; CRACK-PROPAGATION; SQUAT FORMATION; BEHAVIOR;
D O I
10.1016/j.ijfatigue.2022.106762
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Surface defects can induce serious rolling contact fatigue (RCF) damage at wheel/rail interfaces and even cause fracture failure of rail material. This study aims to explore the formation mechanism of surface defects on rails, and to trace the evolution process of RCF behavior of material around the surface defect. Experimental studies were conducted on a wheel/rail twin-disc machine considering two forms of defects: indentation defects caused by ballast impacts (IDBs) and indentation defects caused by cone penetration head impacts (IDCs). Results indicate that IDB can cause RCF cracks that propagate downward deep into the subsurface of rail due to the formation of a material hardening layer (MHL), causing severe damage. IDCs with different sizes and angles were grouped into an affected group and a non-affected group by considering a critical size dividing line and whether the MHLs existed on the defect surface or not. The evolution process of a crack in the affected group includes four main periods: fracture of the MHL, crack initiation, the rail steel matrix filling up the MHL gap and crack propagation downward. Further, the increase in both the angle and the depth of the IDC would lead to severe RCF damage.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Research progress on wheel/rail rolling contact fatigue of rail transit in China
    Zhao, Xin
    Wen, Ze-Feng
    Wang, Heng-Yu
    Tao, Gong-Quan
    Jin, Xue-Song
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (01): : 1 - 35
  • [42] Experimental study on wheel-rail rolling contact fatigue damage starting from surface defects under various operational conditions
    Zhang, S. Y.
    Ding, H. H.
    Lin, Q.
    Liu, Q. Y.
    Spiryagin, M.
    Wu, Q.
    Wang, W. J.
    Zhou, Z. R.
    TRIBOLOGY INTERNATIONAL, 2023, 181
  • [43] Surface fatigue of polymers in rolling contact
    Stolarski, TA
    Hosseini, SM
    Tobe, S
    WEAR, 1998, 214 (02) : 271 - 278
  • [44] Rolling contact fatigue and surface roughness
    Nakajima, A
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 1997, 42 (02) : 111 - 116
  • [45] Research on Rolling Contact Fatigue Life and Damage of Rail Materials
    Wei, Yunpeng
    Han, Jihao
    Yang, Tao
    MECHANICS OF SOLIDS, 2024, : 1559 - 1567
  • [46] Rolling Contact Fatigue Damage in Welded Rail Steel Joints
    Torskaya, E. V.
    Goryacheva, I. G.
    Muravyeva, T. I.
    Shcherbakova, O. O.
    Tsukanov, I. Yu.
    Meshcheryakova, A. R.
    Shkaley, I. V.
    Zagranichek, K. L.
    Zakharov, S. M.
    Shur, E. A.
    PHYSICAL MESOMECHANICS, 2023, 26 (01) : 7 - 18
  • [47] Wheel/rail rolling contact fatigue - Probe, predict, prevent
    Ekberg, Anders
    Akesson, Bengt
    Kabo, Elena
    WEAR, 2014, 314 (1-2) : 2 - 12
  • [48] Numerical stress analysis of rail rolling contact fatigue cracks
    Bogdanski, S
    Olzak, M
    Stupnicki, J
    WEAR, 1996, 191 (1-2) : 14 - 24
  • [49] Investigation on Rolling Contact Fatigue and Wear Properties of Railway Rail
    Wang, Wenjian
    Zhong, Wen
    Guo, Jun
    Liu, Qiyue
    ADVANCED TRIBOLOGY, 2009, : 327 - 328
  • [50] Physical metallurgy aspects of rolling contact fatigue of rail steels
    Shur, EA
    Bychkova, NY
    Trushevsky, SM
    WEAR, 2005, 258 (7-8) : 1165 - 1171