An Approach for Construction and Learning of Interval Type-2 TSK Neuro-Fuzzy Systems

被引:4
|
作者
Ouyang, Chen-Sen [1 ]
Liu, Shiu-Ling [1 ]
机构
[1] Univ I Shou, Dept Informat Engn, Dashu Township 840, Kaohsiung Cty, Taiwan
关键词
D O I
10.1109/FUZZY.2009.5277233
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an approach for construction and learning of interval type-2 TSK neuro-fuzzy systems. In the structure identification phase, we develop a self-constructing rule generation method to group the data into fuzzy clusters and extract initial fuzzy rules for creating an interval type-2 TSK fuzzy system. Then, we construct an interval type-2 TSK fuzzy neural network in the parameter identification phase and propose a hybrid learning algorithm to refine the parameters of initial fuzzy rules for higher precision. The hybrid learning algorithm is composed of the particle swarm optimization and a recursive SVD-based least squares estimator. Finally, we have a set of refined fuzzy rules. Compared with other approaches, experimental results have shown our approach produces smaller root mean squared errors and converges more quickly.
引用
收藏
页码:1517 / 1522
页数:6
相关论文
共 50 条
  • [1] Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA
    Huang, Sharina
    Chen, Minghao
    [J]. NEUROCOMPUTING, 2016, 173 : 1839 - 1850
  • [2] Modular type-2 neuro-fuzzy systems
    Starczewski, Janusz
    Scherer, Rafal
    Korytkowski, Marcin
    Nowicki, Robert
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 570 - 578
  • [3] Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila M.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9254 - 9285
  • [4] Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm
    Méndez, GM
    Castillo, O
    [J]. FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 230 - 235
  • [5] A TSK Neuro-Fuzzy Approach for Modeling Highly Dynamic Systems
    Acampora, Giovanni
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 146 - 152
  • [6] Interval type 2 neuro-fuzzy systems based on interval consequents
    Starczewski, J
    Rutkowski, L
    [J]. NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 570 - 577
  • [7] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [8] Type-2 Neuro-Fuzzy Control for a Class of Nonlinear Systems
    Hou, Shixi
    Wang, Cheng
    Zhai, Suwei
    Chu, Yundi
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1343 - 1347
  • [9] The Monotonicity and Convexity of Unnormalized Interval Type-2 TSK Fuzzy Logic Systems
    Wang, Tiechao
    Yi, Jianqiang
    Li, Chengdong
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [10] A Neuro-Evolutive Interval Type-2 TSK Fuzzy System for Volatile Weather Forecasting
    Kalenatic, Dusko
    Figueroa-Garcia, Juan C.
    Amilcar Lopez, Cesar
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 6215 : 142 - 149