An Approach for Construction and Learning of Interval Type-2 TSK Neuro-Fuzzy Systems

被引:4
|
作者
Ouyang, Chen-Sen [1 ]
Liu, Shiu-Ling [1 ]
机构
[1] Univ I Shou, Dept Informat Engn, Dashu Township 840, Kaohsiung Cty, Taiwan
关键词
D O I
10.1109/FUZZY.2009.5277233
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an approach for construction and learning of interval type-2 TSK neuro-fuzzy systems. In the structure identification phase, we develop a self-constructing rule generation method to group the data into fuzzy clusters and extract initial fuzzy rules for creating an interval type-2 TSK fuzzy system. Then, we construct an interval type-2 TSK fuzzy neural network in the parameter identification phase and propose a hybrid learning algorithm to refine the parameters of initial fuzzy rules for higher precision. The hybrid learning algorithm is composed of the particle swarm optimization and a recursive SVD-based least squares estimator. Finally, we have a set of refined fuzzy rules. Compared with other approaches, experimental results have shown our approach produces smaller root mean squared errors and converges more quickly.
引用
收藏
页码:1517 / 1522
页数:6
相关论文
共 50 条
  • [21] Constructing neuro-fuzzy systems with TSK fuzzy rules and hybrid SVD-based learning
    Lee, WJ
    Ouyang, CS
    Lee, SJ
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1174 - 1179
  • [22] Design of Interval Type-2 Fuzzy Relation-Based Neuro-Fuzzy Networks for Nonlinear Process
    Lee, Dong-Yoon
    Park, Keon-Jun
    [J]. COMPUTER APPLICATIONS FOR SECURITY, CONTROL AND SYSTEM ENGINEERING, 2012, 339 : 336 - +
  • [23] Research on Type-2 TSK Fuzzy Logic Systems
    Zheng, Gao
    Wang, Jing
    Jiang, Lin
    [J]. FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 491 - +
  • [24] Hierarchical type-2 neuro-fuzzy BSP model
    Contreras, Roxana Jimenez
    Bernardes Rebuzzi Vellasco, Marley Maria
    Tanscheit, Ricardo
    [J]. INFORMATION SCIENCES, 2011, 181 (15) : 3210 - 3224
  • [25] Prediction Interval Construction Using Interval Type-2 Fuzzy Logic Systems
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    Naghavizadeh, Reihaneh
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [26] Experimental Evaluation on Defuzzification of TSK-type-based Interval Type-2 Fuzzy Inference Systems
    Zhan, Tao
    Li, Wen-Tao
    Fan, Bing-Jiao
    Liu, Shuai
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (04) : 1338 - 1348
  • [27] Experimental Evaluation on Defuzzification of TSK-type-based Interval Type-2 Fuzzy Inference Systems
    Tao Zhan
    Wen-Tao Li
    Bing-Jiao Fan
    Shuai Liu
    [J]. International Journal of Control, Automation and Systems, 2023, 21 : 1338 - 1348
  • [28] A Practical Approach for Design of PD and PI Like Interval Type-2 TSK Fuzzy Controllers
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 255 - +
  • [29] Interval Type-2 TSK Fuzzy Neural Model for Illuminant Estimation
    Yang, Cheng-Fu
    Chen, Cheng-Lun
    Wang, Yao-Sheng
    [J]. 2016 12TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2016, : 517 - 522
  • [30] Type-2 fuzzy set based neuro-fuzzy model for identification and control of Nonlinear systems
    Singh, Madhusudan
    Hanmandlu, M.
    Srivastava, Smriti
    Gupta, J. R. P.
    [J]. 3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, 2006, : 5 - +