Type-2 Neuro-Fuzzy Control for a Class of Nonlinear Systems

被引:0
|
作者
Hou, Shixi [1 ]
Wang, Cheng [1 ]
Zhai, Suwei [2 ]
Chu, Yundi [1 ]
机构
[1] Hohai Univ, Jiangsu Key Lab Power Transmiss & Distribut Equip, Nanjing 210098, Peoples R China
[2] Elect Power Res Inst Yunnan Power Grid Co Ltd, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear systems; terminal sliding mode control; fuzzy neural network; active power filter; ADAPTIVE-CONTROL;
D O I
10.1109/CCDC52312.2021.9602636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a type-2 neuro-fuzzy control for a class of nonlinear systems is studied. Firstly, an integral-type sliding mode controller (SMC) is designed to ensure that the error converges in a finite time. At the same time, the saturation function as an effective way to alleviate chattering is utilized. Moreover, a type-2 neuro-fuzzy networks (T2NFN), in which network parameters can be adjusted online, is used to approximate the designed SMC. In order to improve the generalization ability, T2NFN combines a recursive feature selection algorithm. In particular, due to the added robust compensator, the issue of the approximation error also can be overcome. Finally, the T2NFN controller is applied to the active power filter (APF) to show its superiority.
引用
收藏
页码:1343 / 1347
页数:5
相关论文
共 50 条
  • [1] Type-2 fuzzy set based neuro-fuzzy model for identification and control of Nonlinear systems
    Singh, Madhusudan
    Hanmandlu, M.
    Srivastava, Smriti
    Gupta, J. R. P.
    [J]. 3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, 2006, : 5 - +
  • [2] Modular type-2 neuro-fuzzy systems
    Starczewski, Janusz
    Scherer, Rafal
    Korytkowski, Marcin
    Nowicki, Robert
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 570 - 578
  • [3] Optimal design of adaptive type-2 neuro-fuzzy systems: A review
    Hassan, Saima
    Khanesar, Mojtaba Ahmadieh
    Kayacan, Erdal
    Jaafar, Jafreezal
    Khosravi, Abbas
    [J]. APPLIED SOFT COMPUTING, 2016, 44 : 134 - 143
  • [4] Hierarchical type-2 neuro-fuzzy BSP model
    Contreras, Roxana Jimenez
    Bernardes Rebuzzi Vellasco, Marley Maria
    Tanscheit, Ricardo
    [J]. INFORMATION SCIENCES, 2011, 181 (15) : 3210 - 3224
  • [5] An Approach for Construction and Learning of Interval Type-2 TSK Neuro-Fuzzy Systems
    Ouyang, Chen-Sen
    Liu, Shiu-Ling
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1517 - 1522
  • [6] Design of Interval Type-2 Fuzzy Relation-Based Neuro-Fuzzy Networks for Nonlinear Process
    Lee, Dong-Yoon
    Park, Keon-Jun
    [J]. COMPUTER APPLICATIONS FOR SECURITY, CONTROL AND SYSTEM ENGINEERING, 2012, 339 : 336 - +
  • [7] Adaptive type-2 neural fuzzy sliding mode control of a class of nonlinear systems
    Muhammad Umair Khan
    Tolgay Kara
    [J]. Nonlinear Dynamics, 2020, 101 : 2283 - 2297
  • [8] Adaptive type-2 neural fuzzy sliding mode control of a class of nonlinear systems
    Khan, Muhammad Umair
    Kara, Tolgay
    [J]. NONLINEAR DYNAMICS, 2020, 101 (04) : 2283 - 2297
  • [9] Type-2 Neuro-Fuzzy Modeling for a Batch Biotechnological Process
    Hernandez Torres, Pablo
    Espejel Rivera, Maria Angelica
    Ramos Velasco, Luis Enrique
    Ramos Fernandez, Julio Cesar
    Waissman Vilanova, Julio
    [J]. ADVANCES IN SOFT COMPUTING, PT II, 2011, 7095 : 37 - +
  • [10] Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor
    Masumpoor, Saleh
    Yaghobi, Hamid
    Khanesar, Mojtaba Ahmadieh
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6635 - 6647