Denoising controlled-source electromagnetic data using least-squares inversion

被引:36
|
作者
Yang, Yang [1 ,2 ]
Li, Diquan [1 ,3 ]
Tong, Tiegang [1 ,3 ]
Zhang, Dong [4 ]
Zhou, Yatong [5 ]
Chen, Yangkang [6 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha, Hunan, Peoples R China
[2] Shandong Univ, Res Ctr Geotech & Struct Engn, Jinan, Shandong, Peoples R China
[3] Cent S Univ, Key Lab Metallogen Predict Nonferrous Met & Geol, Minist Educ, Changsha, Hunan, Peoples R China
[4] Delft Univ Technol, Dept Imaging Phys, Mekelweg 2, NL-2628 CD Delft, Netherlands
[5] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[6] Zhejiang Univ, Sch Earth Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
EMPIRICAL-MODE DECOMPOSITION; NOISE; TRANSFORM; TOOL;
D O I
10.1190/GEO2016-0659.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Strong noise is one of the toughest problems in the controlled-source electromagnetic (CSEM) method, which highly affects the quality of recorded data. The three main types of noise existing in CSEM data are periodic noise, Gaussian white noise, and nonperiodic noise, among which the nonperiodic noise is thought to be the most difficult to remove. We have developed a novel and effective method for removing such nonperiodic noise by formulating an inverse problem that is based on inverse discrete Fourier transform and several time windows in which only Gaussian white noise exists. These critical locations, which we call reconstruction locations, can be found by taking advantage of the continuous wavelet transform (CWT) and the temporal derivative of the scalogram generated by CWT. The coefficients of the nonperiodic noise are first estimated using the new least-squares method, and then they are subtracted from the coefficients of the raw data to produce denoised data. Together with the nonperiodic noise, we also remove Gaussian noise using the proposed method. We validate the methodology using real-world CSEM data.
引用
收藏
页码:E229 / E244
页数:16
相关论文
共 50 条
  • [41] DATA FITTING BY LEAST-SQUARES
    ALVAREZNAZARIO, F
    [J]. JOURNAL OF THE ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS, 1975, 58 (06): : 1138 - 1142
  • [42] Least-squares decomposition with time-space constraint for denoising microseismic data
    Chen, Yangkang
    Chen, Wei
    Wang, Yufeng
    Bai, Min
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (03) : 1864 - 1880
  • [43] Robust inversion of vertical electrical sounding data using a multiple reweighted least-squares method
    Porsani, MJ
    Niwas, S
    Ferreira, NR
    [J]. GEOPHYSICAL PROSPECTING, 2001, 49 (02) : 255 - 264
  • [44] Resistivity imaging with controlled-source electromagnetic data: depth and data weighting
    Plessix, R-E
    Mulder, W. A.
    [J]. INVERSE PROBLEMS, 2008, 24 (03)
  • [45] Least-squares interband denoising of color and multispectral images
    Scheunders, P
    Driesen, J
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 985 - 988
  • [46] Reexamination of controlled-source electromagnetic inversion at the Lona prospect, Orphan Basin, Canada
    Hoversten, G. Michael
    Mackie, Randall L.
    Hua, Yong
    [J]. GEOPHYSICS, 2021, 86 (03) : E157 - E170
  • [47] A review of marine controlled-source electromagnetic data preprocessing technology
    Li, Suyi
    Gu, Chunying
    Yang, Jiayu
    Zhang, Yi
    Diao, Shu
    Ji, Yanju
    [J]. AIP ADVANCES, 2022, 12 (09)
  • [48] Statistical inversion of controlled-source seismic data using parabolic wave scattering theory
    Line, CER
    Hobbs, RW
    Hudson, JA
    Snyder, DB
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 132 (01) : 61 - 78
  • [49] Marlim R3D: A realistic model for controlled-source electromagnetic simulations - Phase 2: The controlled-source electromagnetic data set
    Correa, Jorlivan L.
    Menezes, Paulo T. L.
    [J]. GEOPHYSICS, 2019, 84 (05) : E293 - E299
  • [50] NUMERICAL INVERSION OF ABEL INTEGRAL FUNCTION, USING LEAST-SQUARES SPLINES
    BOCK, TL
    [J]. ANNALEN DER PHYSIK, 1977, 34 (05) : 335 - 340