Denoising controlled-source electromagnetic data using least-squares inversion

被引:36
|
作者
Yang, Yang [1 ,2 ]
Li, Diquan [1 ,3 ]
Tong, Tiegang [1 ,3 ]
Zhang, Dong [4 ]
Zhou, Yatong [5 ]
Chen, Yangkang [6 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha, Hunan, Peoples R China
[2] Shandong Univ, Res Ctr Geotech & Struct Engn, Jinan, Shandong, Peoples R China
[3] Cent S Univ, Key Lab Metallogen Predict Nonferrous Met & Geol, Minist Educ, Changsha, Hunan, Peoples R China
[4] Delft Univ Technol, Dept Imaging Phys, Mekelweg 2, NL-2628 CD Delft, Netherlands
[5] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[6] Zhejiang Univ, Sch Earth Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
EMPIRICAL-MODE DECOMPOSITION; NOISE; TRANSFORM; TOOL;
D O I
10.1190/GEO2016-0659.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Strong noise is one of the toughest problems in the controlled-source electromagnetic (CSEM) method, which highly affects the quality of recorded data. The three main types of noise existing in CSEM data are periodic noise, Gaussian white noise, and nonperiodic noise, among which the nonperiodic noise is thought to be the most difficult to remove. We have developed a novel and effective method for removing such nonperiodic noise by formulating an inverse problem that is based on inverse discrete Fourier transform and several time windows in which only Gaussian white noise exists. These critical locations, which we call reconstruction locations, can be found by taking advantage of the continuous wavelet transform (CWT) and the temporal derivative of the scalogram generated by CWT. The coefficients of the nonperiodic noise are first estimated using the new least-squares method, and then they are subtracted from the coefficients of the raw data to produce denoised data. Together with the nonperiodic noise, we also remove Gaussian noise using the proposed method. We validate the methodology using real-world CSEM data.
引用
收藏
页码:E229 / E244
页数:16
相关论文
共 50 条
  • [21] A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data
    Asif, Muhammad Rizwan
    Bording, Thue S.
    Maurya, Pradip K.
    Zhang, Bo
    Fiandaca, Gianluca
    Grombacher, Denys J.
    Christiansen, Anders, V
    Auken, Esben
    Larsen, Jakob Juul
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Denoising of multicomponent images using wavelet least-squares estimators
    De Backer, Steve
    Pizurica, Aleksandra
    Huysmans, Bruno
    Philips, Wilfried
    Scheunders, Paul
    [J]. IMAGE AND VISION COMPUTING, 2008, 26 (07) : 1038 - 1051
  • [23] Inversion of inline and broadside marine controlled-source electromagnetic data with constraints derived from seismic data
    Wiik, Torgeir
    Nordskag, Janniche Iren
    Dischler, Eirik Overland
    Nguyen, Anh Kiet
    [J]. GEOPHYSICAL PROSPECTING, 2015, 63 (06) : 1371 - 1382
  • [24] Aspects of chaotic dynamics in the least-squares inversion of gravity data
    Cooper, GRJ
    [J]. COMPUTERS & GRAPHICS-UK, 2001, 25 (04): : 691 - 697
  • [25] 3-D parallel anisotropic inversion of controlled-source electromagnetic data using nested tetrahedral grids
    Ren, Zhengyong
    Liu, Zhengguang
    Tang, Jingtian
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 239 (02) : 1335 - 1358
  • [26] Denoising spectroscopic data by means of the improved least-squares deconvolution method
    Tkachenko, A.
    Van Reeth, T.
    Tsymbal, V.
    Aerts, C.
    Kochukhov, O.
    Debosscher, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 560
  • [27] Joint focusing inversion of marine controlled-source electromagnetic and full tensor gravity gradiometry data
    Tu, Xiaolei
    Zhdanov, Michael S.
    [J]. GEOPHYSICS, 2022, 87 (05) : K35 - K47
  • [28] The Fourier transform of controlled-source time-domain electromagnetic data by smooth spectrum inversion
    Mitsuhata, Y
    Uchida, T
    Murakami, Y
    Amano, H
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2001, 144 (01) : 123 - 135
  • [29] Three-dimensional inversion of controlled-source electromagnetic data using general measures to evaluate data misfits and model structures
    Chung, Yonghyun
    Seol, Soon Jee
    Byun, Joongmoo
    [J]. GEOPHYSICAL PROSPECTING, 2024,
  • [30] On denoising via penalized least-squares rules
    Gudmundson, Erik
    Stoica, Petre
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3705 - 3708