Denoising controlled-source electromagnetic data using least-squares inversion

被引:36
|
作者
Yang, Yang [1 ,2 ]
Li, Diquan [1 ,3 ]
Tong, Tiegang [1 ,3 ]
Zhang, Dong [4 ]
Zhou, Yatong [5 ]
Chen, Yangkang [6 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha, Hunan, Peoples R China
[2] Shandong Univ, Res Ctr Geotech & Struct Engn, Jinan, Shandong, Peoples R China
[3] Cent S Univ, Key Lab Metallogen Predict Nonferrous Met & Geol, Minist Educ, Changsha, Hunan, Peoples R China
[4] Delft Univ Technol, Dept Imaging Phys, Mekelweg 2, NL-2628 CD Delft, Netherlands
[5] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[6] Zhejiang Univ, Sch Earth Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
EMPIRICAL-MODE DECOMPOSITION; NOISE; TRANSFORM; TOOL;
D O I
10.1190/GEO2016-0659.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Strong noise is one of the toughest problems in the controlled-source electromagnetic (CSEM) method, which highly affects the quality of recorded data. The three main types of noise existing in CSEM data are periodic noise, Gaussian white noise, and nonperiodic noise, among which the nonperiodic noise is thought to be the most difficult to remove. We have developed a novel and effective method for removing such nonperiodic noise by formulating an inverse problem that is based on inverse discrete Fourier transform and several time windows in which only Gaussian white noise exists. These critical locations, which we call reconstruction locations, can be found by taking advantage of the continuous wavelet transform (CWT) and the temporal derivative of the scalogram generated by CWT. The coefficients of the nonperiodic noise are first estimated using the new least-squares method, and then they are subtracted from the coefficients of the raw data to produce denoised data. Together with the nonperiodic noise, we also remove Gaussian noise using the proposed method. We validate the methodology using real-world CSEM data.
引用
收藏
页码:E229 / E244
页数:16
相关论文
共 50 条
  • [1] ELECTROMAGNETIC SEISMOGRAPH CONSTANTS BY LEAST-SQUARES INVERSION
    MITCHELL, BJ
    LANDISMA.M
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1969, 59 (03) : 1335 - &
  • [2] Inversion of controlled-source electromagnetic data using a model-based approach
    Li, Maokun
    Abubakar, Aria
    Habashy, Tarek M.
    Zhang, Yan
    [J]. GEOPHYSICAL PROSPECTING, 2010, 58 (03) : 455 - 467
  • [3] Joint contrast source inversion of marine magnetotelluric and controlled-source electromagnetic data
    Wiik, Torgeir
    Hokstad, Ketil
    Ursin, Bjorn
    Mutschard, Lutz
    [J]. GEOPHYSICS, 2013, 78 (06) : E315 - E327
  • [4] Seismically regularized controlled-source electromagnetic inversion
    Brown, Vanessa
    Key, Kerry
    Singh, Satish
    [J]. GEOPHYSICS, 2012, 77 (01) : E57 - E65
  • [5] Joint inversion of controlled-source electromagnetic and production data for reservoir monitoring
    Liang, Lin
    Abubakar, Aria
    Habashy, Tarek M.
    [J]. GEOPHYSICS, 2012, 77 (05) : ID9 - ID22
  • [6] A model-based inversion algorithm for controlled-source electromagnetic data
    Zhang, Yan
    Abubakar, Aria
    Habashy, Tarek M.
    [J]. 2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 1653 - 1656
  • [7] Inversion of controlled-source electromagnetic reflection responses
    Hunziker, Jurg
    Thorbecke, Jan
    Brackenhoff, Joeri
    Slob, Evert
    [J]. GEOPHYSICS, 2016, 81 (05) : F49 - F57
  • [8] Marine Controlled-Source Electromagnetic Data Denoising Method Using Symplectic Geometry Mode Decomposition
    Chen, Yijie
    Guo, Zhenwei
    Gao, Dawei
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (08)
  • [9] GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising
    Li, Guang
    Wu, Shouli
    Cai, Hongzhu
    Chen, Chaojian
    Chen, Hui
    Xiao, Donghan
    Yan, Jiayong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering
    Ray, Anandaroop
    Alumbaugh, David L.
    Hoversten, Michael
    Key, Kerry
    [J]. GEOPHYSICS, 2013, 78 (06) : E271 - E280