Asymptotic properties of approximate Bayesian computation

被引:34
|
作者
Frazier, D. T. [1 ]
Martin, G. M. [1 ]
Robert, C. P. [2 ]
Rousseau, J. [3 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Scen Blvd, Clayton, Vic 3800, Australia
[2] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
基金
澳大利亚研究理事会;
关键词
Approximate Bayesian computation; Asymptotics; Bernstein-von Mises theorem; Likelihood-free method; Posterior concentration; STATISTICS; MODEL;
D O I
10.1093/biomet/asy027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approximate Bayesian computation allows for statistical analysis using models with intractable likelihoods. In this paper we consider the asymptotic behaviour of the posterior distribution obtained by this method. We give general results on the rate at which the posterior distribution concentrates on sets containing the true parameter, the limiting shape of the posterior distribution, and the asymptotic distribution of the posterior mean. These results hold under given rates for the tolerance used within the method, mild regularity conditions on the summary statistics, and a condition linked to identification of the true parameters. Implications for practitioners are discussed.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [41] Adaptive approximate Bayesian computation for complex models
    Lenormand, Maxime
    Jabot, Franck
    Deffuant, Guillaume
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2777 - 2796
  • [42] Approximate Bayesian Computation for the Parameters of PRISM Programs
    Cussens, James
    [J]. INDUCTIVE LOGIC PROGRAMMING, ILP 2010, 2011, 6489 : 38 - 46
  • [43] ABCDP: Approximate Bayesian Computation with Differential Privacy
    Park, Mijung
    Vinaroz, Margarita
    Jitkrittum, Wittawat
    [J]. ENTROPY, 2021, 23 (08)
  • [44] Wasserstein approximate bayesian computation for visual tracking
    Park, Jinhee
    Kwon, Junseok
    [J]. PATTERN RECOGNITION, 2022, 131
  • [45] Fundamentals and Recent Developments in Approximate Bayesian Computation
    Lintusaari, Jarno
    Gutmann, Michael U.
    Dutta, Ritabrata
    Kaski, Samuel
    Corander, Jukka
    [J]. SYSTEMATIC BIOLOGY, 2017, 66 (01) : E66 - E82
  • [46] Cophylogeny Reconstruction via an Approximate Bayesian Computation
    Baudet, C.
    Donati, B.
    Sinaimeri, B.
    Crescenzi, P.
    Gautier, C.
    Matias, C.
    Sagot, M. -F.
    [J]. SYSTEMATIC BIOLOGY, 2015, 64 (03) : 416 - 431
  • [47] Reachability Design Through Approximate Bayesian Computation
    Bentriou, Mahmoud
    Ballarini, Paolo
    Cournede, Paul-Henry
    [J]. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2019), 2019, 11773 : 207 - 223
  • [48] Adaptive Approximate Bayesian Computation Tolerance Selection
    Simola, Umberto
    Cisewski-Kehe, Jessi
    Gutmann, Michael U.
    Corander, Jukka
    [J]. BAYESIAN ANALYSIS, 2021, 16 (02): : 397 - 423
  • [49] Approximate Bayesian computation for forward modeling in cosmology
    Akeret, Joel
    Refregier, Alexandre
    Amara, Adam
    Seehars, Sebastian
    Hasner, Caspar
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08):
  • [50] Approximate Bayesian Computation Via the Energy Statistic
    Hien Duy Nguyen
    Arbel, Julyan
    Lu, Hongliang
    Forbes, Florence
    [J]. IEEE ACCESS, 2020, 8 : 131683 - 131698