Asymptotic properties of approximate Bayesian computation

被引:34
|
作者
Frazier, D. T. [1 ]
Martin, G. M. [1 ]
Robert, C. P. [2 ]
Rousseau, J. [3 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Scen Blvd, Clayton, Vic 3800, Australia
[2] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
基金
澳大利亚研究理事会;
关键词
Approximate Bayesian computation; Asymptotics; Bernstein-von Mises theorem; Likelihood-free method; Posterior concentration; STATISTICS; MODEL;
D O I
10.1093/biomet/asy027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approximate Bayesian computation allows for statistical analysis using models with intractable likelihoods. In this paper we consider the asymptotic behaviour of the posterior distribution obtained by this method. We give general results on the rate at which the posterior distribution concentrates on sets containing the true parameter, the limiting shape of the posterior distribution, and the asymptotic distribution of the posterior mean. These results hold under given rates for the tolerance used within the method, mild regularity conditions on the summary statistics, and a condition linked to identification of the true parameters. Implications for practitioners are discussed.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [31] Filtering via approximate Bayesian computation
    Jasra, Ajay
    Singh, Sumeetpal S.
    Martin, James S.
    McCoy, Emma
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1223 - 1237
  • [32] Approximate Bayesian computation in population genetics
    Beaumont, MA
    Zhang, WY
    Balding, DJ
    [J]. GENETICS, 2002, 162 (04) : 2025 - 2035
  • [33] HYPERPARAMETER OPTIMIZATION FOR APPROXIMATE BAYESIAN COMPUTATION
    Singh, Prashant
    Hellander, Andreas
    [J]. 2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1718 - 1729
  • [34] Filtering via approximate Bayesian computation
    Ajay Jasra
    Sumeetpal S. Singh
    James S. Martin
    Emma McCoy
    [J]. Statistics and Computing, 2012, 22 : 1223 - 1237
  • [35] New insights into Approximate Bayesian Computation
    Biau, Gerard
    Cerou, Frederic
    Guyader, Arnaud
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 376 - 403
  • [36] Approximate Bayesian Computation: A Nonparametric Perspective
    Blum, Michael G. B.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1178 - 1187
  • [37] Approximate Bayesian computation with functional statistics
    Soubeyrand, Samuel
    Carpentier, Florence
    Guiton, Francois
    Klein, Etienne K.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 17 - 37
  • [38] Approximate Bayesian computation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) : 235 - 269
  • [39] Approximate Bayesian computation using indirect inference
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Faddy, Malcolm J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 : 317 - 337
  • [40] Multilevel Monte Carlo in approximate Bayesian computation
    Jasra, Ajay
    Jo, Seongil
    Nott, David
    Shoemaker, Christine
    Tempone, Raul
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (03) : 346 - 360