Asymptotic properties of approximate Bayesian computation

被引:34
|
作者
Frazier, D. T. [1 ]
Martin, G. M. [1 ]
Robert, C. P. [2 ]
Rousseau, J. [3 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Scen Blvd, Clayton, Vic 3800, Australia
[2] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
基金
澳大利亚研究理事会;
关键词
Approximate Bayesian computation; Asymptotics; Bernstein-von Mises theorem; Likelihood-free method; Posterior concentration; STATISTICS; MODEL;
D O I
10.1093/biomet/asy027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approximate Bayesian computation allows for statistical analysis using models with intractable likelihoods. In this paper we consider the asymptotic behaviour of the posterior distribution obtained by this method. We give general results on the rate at which the posterior distribution concentrates on sets containing the true parameter, the limiting shape of the posterior distribution, and the asymptotic distribution of the posterior mean. These results hold under given rates for the tolerance used within the method, mild regularity conditions on the summary statistics, and a condition linked to identification of the true parameters. Implications for practitioners are discussed.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [1] Testing Model Specification in Approximate Bayesian Computation Using Asymptotic Properties
    Ramirez-Hassan, Andres
    Frazier, David T.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (03) : 1122 - 1128
  • [2] On the asymptotic efficiency of approximate Bayesian computation estimators
    Li, Wentao
    Fearnhead, Paul
    [J]. BIOMETRIKA, 2018, 105 (02) : 285 - 299
  • [3] Asymptotic behaviour of the posterior distribution in approximate Bayesian computation
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (05) : 944 - 979
  • [4] Approximate Bayesian Computation
    Beaumont, Mark A.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 379 - 403
  • [5] Approximate Bayesian Computation
    Sunnaker, Mikael
    Busetto, Alberto Giovanni
    Numminen, Elina
    Corander, Jukka
    Foll, Matthieu
    Dessimoz, Christophe
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)
  • [6] Hierarchical Approximate Bayesian Computation
    Brandon M. Turner
    Trisha Van Zandt
    [J]. Psychometrika, 2014, 79 : 185 - 209
  • [7] Approximate Bayesian computation methods
    Gilles Celeux
    [J]. Statistics and Computing, 2012, 22 : 1165 - 1166
  • [8] Approximate Methods for Bayesian Computation
    Craiu, Radu, V
    Levi, Evgeny
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 379 - 399
  • [9] Approximate Bayesian computation methods
    Celeux, Gilles
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1165 - 1166
  • [10] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    [J]. BIOMETRIKA, 2009, 96 (04) : 983 - 990