THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS

被引:0
|
作者
Quastel, J. D. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2L7, Canada
关键词
SIMPLE EXCLUSION PROCESS; POLYNUCLEAR GROWTH-MODEL; DIRECTED POLYMERS; RANDOM ENVIRONMENT; GROWING INTERFACES; INITIAL CONDITION; SCALE-INVARIANCE; EXTERNAL SOURCES; KPZ EQUATION; FLUCTUATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since the previous ICMP in 2009 in Prague, there has been considerable progress on the Kardar-Parisi-Zhang equation. Our goal here is to give a very brief discussion of some of the results. More comprehensive surveys are available [1-4].
引用
收藏
页码:113 / 133
页数:21
相关论文
共 50 条
  • [21] Kardar-Parisi-Zhang universality at the edge of Laughlin states
    Monteiro, Gustavo M.
    Reynolds, Dylan
    Glorioso, Paolo
    Ganeshan, Sriram
    PHYSICAL REVIEW B, 2025, 111 (04)
  • [22] Universality classes in the anisotropic Kardar-Parisi-Zhang model
    Täuber, UC
    Frey, E
    EUROPHYSICS LETTERS, 2002, 59 (05): : 655 - 661
  • [23] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [24] The 1D Kardar-Parisi-Zhang equation: Height distribution and universality
    Sasamoto, Tomohiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):
  • [25] Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
    Rodriguez-Fernandez, Enrique
    Ales, Alejandro
    Martin-alvarez, Jorge
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [26] Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class
    Corwin, Ivan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1007 - 1034
  • [27] GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    MOORE, MA
    BLUM, T
    DOHERTY, JP
    MARSILI, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4257 - 4260
  • [28] Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (3-A):
  • [29] Pseudospectral method for the Kardar-Parisi-Zhang equation
    Giada, L
    Giacometti, A
    Rossi, M
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [30] Conserved Kardar-Parisi-Zhang equation: Role of quenched disorder in determining universality
    Mukherjee, Sudip
    PHYSICAL REVIEW E, 2021, 103 (04)