Selective Synthesis of γ-WO3 and β-WO3.H2O by the Hydrothermal Treatment of Peroxotungstic Acid

被引:4
|
作者
Bushkova, T. M. [1 ]
Egorova, A. A. [1 ]
Khoroshilov, A., V [1 ]
Ivanova, O. S. [1 ]
Yapryntsev, A. D. [1 ]
Baranchikov, A. E. [1 ]
Ivanov, V. K. [1 ]
机构
[1] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Leninskii Pr 31, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
tungsten trioxide; hydrothermal synthesis; disperse materials; tungsten(VI) oxide; peroxotungstic acid; TUNGSTEN-OXIDE FILMS; SOL-GEL PROCESS; WO3; NANOCRYSTALS; SOLVOTHERMAL SYNTHESIS; ELECTRICAL-PROPERTIES; PHASE-TRANSITIONS; TEMPERATURE; MORPHOLOGY; TRIOXIDE; FACILE;
D O I
10.1134/S0036023621040070
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A selective method has been suggested for the synthesis of highly dispersed powders of gamma-WO3 (monoclinic) and beta-WO3.H2O (orthorhombic) by the hydrothermal treatment of aqueous suspensions of peroxotungstic acid in temperature range 70-250 degrees C. The hydrothermal treatment of suspensions of peroxotungstic acid leads to formation of monophase beta-WO3.H2O at temperature up to 100 degrees C and monophase gamma-WO3 at 250 degrees C. The hydrothermal treatment in the temperature range 120-200 degrees C gives two-phase samples of gamma-WO3 and beta-WO3.0.33H(2)O (orthorhombic syngony). The obtained monophase and two-phase powders have been studied by X-ray powder diffraction, scanning electron microscopy, IR spectroscopy, thermal analysis, and diffuse reflectance spectroscopy.
引用
收藏
页码:496 / 501
页数:6
相关论文
共 50 条
  • [21] Synthesis Design of Electronegativity Dependent WO3 and WO3•0.33H2O Materials for a Better Understanding of TiO2/WO3 Composites' Photocatalytic Activity
    Szekely, Istvan
    Kedves, Endre-Zsolt
    Pap, Zsolt
    Baia, Monica
    CATALYSTS, 2021, 11 (07)
  • [22] KINETICS OF COLORATION OF ANODIC ELECTROCHROMIC FILMS OF WO3.H2O
    SUNSERI, C
    DIQUARTO, F
    DIPAOLA, A
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980, 10 (05) : 669 - 675
  • [23] Vibrational spectra of WO3•nH2O and WO3 polymorphs
    Kustova, G. N.
    Chesalov, Yu. A.
    Plyasova, L. M.
    Molina, I. Yu.
    Nizovskii, A. I.
    VIBRATIONAL SPECTROSCOPY, 2011, 55 (02) : 235 - 240
  • [24] Hydrothermal Synthesis and Electrochemical Performance of WO3 nanoparticles
    Feng, Li Jin
    Ma, Rong
    Li, Xiu Hua
    Song, Xu Chun
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 217 - 220
  • [25] Effect of hydrothermal duration on synthesis of WO3 nanorods
    Hamid Hassani
    Ehsan Marzbanrad
    Cyrus Zamani
    Babak Raissi
    Journal of Materials Science: Materials in Electronics, 2011, 22 : 1264 - 1268
  • [26] Effect of hydrothermal duration on synthesis of WO3 nanorods
    Hassani, Hamid
    Marzbanrad, Ehsan
    Zamani, Cyrus
    Raissi, Babak
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (09) : 1264 - 1268
  • [27] H2O Adsorption on WO3 and WO3-x (001) Surfaces
    Albanese, Elisa
    Di Valentin, Cristiana
    Pacchioni, Gianfranco
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) : 23212 - 23221
  • [28] ACID LEACHING OF LIMW(2)O(8) (M=AL, FE) IN AQUEOUS HNO3 - FORMATION OF WO3.H2O AND WO3.1/3H(2)O
    BHUVANESH, NSP
    UMA, S
    SUBBANNA, GN
    GOPALAKRISHNAN, J
    JOURNAL OF MATERIALS CHEMISTRY, 1995, 5 (06) : 927 - 930
  • [29] Hydrothermal synthesis of assembled WO3•H2O nanoflowers with enhanced gas sensing performance
    Yu, Yangchun
    Zeng, Wen
    Zhang, He
    MATERIALS LETTERS, 2016, 171 : 162 - 165
  • [30] Synthesis of monodisperse WO3•2H2O nanospheres by microwave hydrothermal process with L(+) tartaric acid as a protective agent
    Sun, Qingjun
    Luo, Hanmin
    Xie, Zhengfeng
    Wang, Jide
    Su, Xintai
    MATERIALS LETTERS, 2008, 62 (17-18) : 2992 - 2994