Synthesis of monodisperse WO3•2H2O nanospheres by microwave hydrothermal process with L(+) tartaric acid as a protective agent

被引:41
|
作者
Sun, Qingjun [1 ]
Luo, Hanmin [1 ]
Xie, Zhengfeng [1 ]
Wang, Jide [1 ]
Su, Xintai [1 ]
机构
[1] Xinjiang Univ, Coll Chem & Chem Engn, Urumqi 830046, Peoples R China
关键词
tungsten (VI) oxide dihydrate; nanomaterials; monodisperse nanospheres; microwave hydrothermal;
D O I
10.1016/j.matlet.2008.01.093
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monodisperse crystalline WO(3)center dot 2H(2)O (H(2)WO(4)center dot H(2)O) nanospheres have been prepared by L (+) tartaric acid-assisted microwave hydrothermal (MH) process for the first time. The X-ray powder diffraction (XRD) pattern indicated that the product was in good agreement with the standard JCPDS data for WO(3)center dot 2H(2)O. The particle sizes and shapes have been measured by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The effects of the mass ratios of L (+) tartaric acid to Na(2)WO(4)center dot 2H(2)O on the morphology of WO(3)center dot 2H(2)O have been investigated. Finally, The formation mechanism for L (+) tartaric acid-assisted MH synthesis of the WO(3)-2H(2)O nanospheres was also discussed in detail. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2992 / 2994
页数:3
相关论文
共 50 条
  • [1] Hydrothermal synthesis of monodisperse WO3•H2O square platelet particles
    Shiba, Fumiyuki
    Yokoyama, Masakazu
    Mita, Yousei
    Yamakawa, Tomohiro
    Okawa, Yusuke
    MATERIALS LETTERS, 2007, 61 (8-9) : 1778 - 1780
  • [2] Selective Synthesis of γ-WO3 and β-WO3⋅H2O by the Hydrothermal Treatment of Peroxotungstic Acid
    T. M. Bushkova
    A. A. Egorova
    A. V. Khoroshilov
    O. S. Ivanova
    A. D. Yapryntsev
    A. E. Baranchikov
    V. K. Ivanov
    Russian Journal of Inorganic Chemistry, 2021, 66 : 496 - 501
  • [3] Selective Synthesis of γ-WO3 and β-WO3.H2O by the Hydrothermal Treatment of Peroxotungstic Acid
    Bushkova, T. M.
    Egorova, A. A.
    Khoroshilov, A., V
    Ivanova, O. S.
    Yapryntsev, A. D.
    Baranchikov, A. E.
    Ivanov, V. K.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2021, 66 (04) : 496 - 501
  • [4] A thermal dehydration study of WO3·2H2O
    S Ayyappan
    N Rangavittal
    Bulletin of Materials Science, 1997, 20 : 103 - 109
  • [5] Synthesis and controlled growth of monodisperse WO3 • H2O square nanoplates with the assistance of malic acid
    Miao, Bin
    Zeng, Wen
    Xu, Sibo
    Zeng, Shuai
    Chen, Yong
    Wu, Shufang
    MATERIALS LETTERS, 2013, 113 : 13 - 16
  • [6] Fabrication of WO3•2H2O nanoplatelet powder by breakdown anodization
    Wu, Shizhao
    Li, Yuru
    Chen, Xiaodan
    Liu, Jingyi
    Gao, Jing
    Li, Guohua
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 104
  • [7] Preparation and proton conductivity of WO3•2H2O/epoxy composite films
    Tanaka, Y
    Miyayama, M
    Hibino, M
    Kudo, T
    SOLID STATE IONICS, 2004, 171 (1-2) : 33 - 39
  • [8] Controlled synthesis of monodisperse WO3•H2O square nanoplates and their gas sensing properties
    Miao, Bin
    Zeng, Wen
    Mu, Yuji
    Yu, Weijie
    Hussain, Shahid
    Xu, Sibo
    Zhang, He
    Li, Tianming
    APPLIED SURFACE SCIENCE, 2015, 349 : 380 - 386
  • [9] Hydrothermal synthesis of WO3•0.5H2O microtubes with excellent photocatalytic properties
    Wang, Xiaozhou
    Meng, Xiuqing
    Zhong, Mianzeng
    Wu, Fengmin
    Li, Jingbo
    APPLIED SURFACE SCIENCE, 2013, 282 : 826 - 831
  • [10] Hydrothermal synthesis of WO3•1/3H2O nanorods and study of their electrical properties
    Boukriba, M.
    Sediri, F.
    Gharbi, N.
    POLYHEDRON, 2010, 29 (09) : 2070 - 2074